These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. Soler-Arango J; Figoli C; Muraca G; Bosch A; Brelles-Mariño G PLoS One; 2019; 14(6):e0216817. PubMed ID: 31233528 [TBL] [Abstract][Full Text] [Related]
3. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. Alkawareek MY; Algwari QT; Gorman SP; Graham WG; O'Connell D; Gilmore BF FEMS Immunol Med Microbiol; 2012 Jul; 65(2):381-4. PubMed ID: 22329678 [TBL] [Abstract][Full Text] [Related]
4. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. Vandervoort KG; Brelles-Mariño G PLoS One; 2014; 9(10):e108512. PubMed ID: 25302815 [TBL] [Abstract][Full Text] [Related]
5. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Flynn PB; Higginbotham S; Alshraiedeh NH; Gorman SP; Graham WG; Gilmore BF Int J Antimicrob Agents; 2015 Jul; 46(1):101-7. PubMed ID: 25963338 [TBL] [Abstract][Full Text] [Related]
6. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. Manavathu EK; Vager DL; Vazquez JA BMC Microbiol; 2014 Mar; 14():53. PubMed ID: 24588809 [TBL] [Abstract][Full Text] [Related]
7. Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma. Helgadóttir S; Pandit S; Mokkapati VR; Westerlund F; Apell P; Mijakovic I Front Cell Infect Microbiol; 2017; 7():43. PubMed ID: 28275584 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. Mai-Prochnow A; Bradbury M; Ostrikov K; Murphy AB PLoS One; 2015; 10(6):e0130373. PubMed ID: 26114428 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro. Matthes R; Hübner NO; Bender C; Koban I; Horn S; Bekeschus S; Weltmann KD; Kocher T; Kramer A; Assadian O Skin Pharmacol Physiol; 2014; 27(3):148-57. PubMed ID: 24434726 [TBL] [Abstract][Full Text] [Related]
11. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Ermolaeva SA; Varfolomeev AF; Chernukha MY; Yurov DS; Vasiliev MM; Kaminskaya AA; Moisenovich MM; Romanova JM; Murashev AN; Selezneva II; Shimizu T; Sysolyatina EV; Shaginyan IA; Petrov OF; Mayevsky EI; Fortov VE; Morfill GE; Naroditsky BS; Gintsburg AL J Med Microbiol; 2011 Jan; 60(Pt 1):75-83. PubMed ID: 20829396 [TBL] [Abstract][Full Text] [Related]
12. Augmented survival of Neisseria gonorrhoeae within biofilms: exposure to atmospheric pressure non-thermal plasmas. Xu L; Tu Y; Yu Y; Tan M; Li J; Chen H Eur J Clin Microbiol Infect Dis; 2011 Jan; 30(1):25-31. PubMed ID: 20839022 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial mechanism and the effect of atmospheric pressure N Wang J; Yu Z; Xu Z; Hu S; Li Y; Xue X; Cai Q; Zhou X; Shen J; Lan Y; Cheng C Biofouling; 2018 Sep; 34(8):935-949. PubMed ID: 30477343 [TBL] [Abstract][Full Text] [Related]
14. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa. Nagant C; Pitts B; Stewart PS; Feng Y; Savage PB; Dehaye JP Microbiologyopen; 2013 Apr; 2(2):318-25. PubMed ID: 23436807 [TBL] [Abstract][Full Text] [Related]
15. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806 [No Abstract] [Full Text] [Related]
16. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. Brun P; Bernabè G; Marchiori C; Scarpa M; Zuin M; Cavazzana R; Zaniol B; Martines E J Appl Microbiol; 2018 Aug; 125(2):398-408. PubMed ID: 29655267 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication. Ermolaeva SA; Sysolyatina EV; Gintsburg AL Biointerphases; 2015 Jun; 10(2):029404. PubMed ID: 25869456 [TBL] [Abstract][Full Text] [Related]
18. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma. Alshraiedeh NH; Higginbotham S; Flynn PB; Alkawareek MY; Tunney MM; Gorman SP; Graham WG; Gilmore BF Int J Antimicrob Agents; 2016 Jun; 47(6):446-50. PubMed ID: 27179816 [TBL] [Abstract][Full Text] [Related]
19. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Vassena C; Fenu S; Giuliani F; Fantetti L; Roncucci G; Simonutti G; Romanò CL; De Francesco R; Drago L Int J Antimicrob Agents; 2014 Jul; 44(1):47-55. PubMed ID: 24933446 [TBL] [Abstract][Full Text] [Related]
20. In vitro antibacterial and antibiofilm effects of cold atmospheric microwave plasma against Pseudomonas aeruginosa causing canine skin and ear infections. Kim EJ; Hyun JE; Kang YH; Baek SJ; Hwang CY Vet Dermatol; 2022 Feb; 33(1):29-e10. PubMed ID: 34747063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]