These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22953207)

  • 1. Prediction of peak back compressive forces as a function of lifting speed and compressive forces at lift origin and destination - a pilot study.
    Greenland KO; Merryweather AS; Bloswick DS
    Saf Health Work; 2011 Sep; 2(3):236-42. PubMed ID: 22953207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lifting speed on cumulative and peak biomechanical loading for symmetric lifting tasks.
    Greenland KO; Merryweather AS; Bloswick DS
    Saf Health Work; 2013 Jun; 4(2):105-10. PubMed ID: 23961334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.
    Fathallah FA; Marras WS; Parnianpour M
    Hum Factors; 1999 Sep; 41(3):373-88. PubMed ID: 10665206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD).
    Abdoli-Eramaki M; Stevenson JM; Reid SA; Bryant TJ
    J Biomech; 2007; 40(8):1694-700. PubMed ID: 17466313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load spatial pathway and spine loading: how does lift origin and destination influence low back response?
    Davis K; Marras W
    Ergonomics; 2005 Jun; 48(8):1031-46. PubMed ID: 16147419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS; Kingma I; de Looze MP; van Dieën JH
    J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of pacing as a control measure for an industrial lifting task above waist height.
    Abdoli-E M; Damecour C; Petersen A; Potvin J
    Work; 2014; 47(1):15-22. PubMed ID: 24004740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk factors for lower back injury in male dancers performing ballet lifts.
    Alderson J; Hopper L; Elliott B; Ackland T
    J Dance Med Sci; 2009; 13(3):83-9. PubMed ID: 19754984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of task resistance on the characteristics of maximal one- and two-handed lifting exertions in men and women.
    Fothergill DM; Grieve DW; Pinder AD
    Eur J Appl Physiol Occup Physiol; 1996; 72(5-6):430-9. PubMed ID: 8925813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FMS™ scores and low-back loading during lifting--whole-body movement screening as an ergonomic tool?
    Beach TA; Frost DM; Callaghan JP
    Appl Ergon; 2014 May; 45(3):482-9. PubMed ID: 23876984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of body segment dynamics on loads at the lumbar spine during lifting.
    Tsuang YH; Schipplein OD; Trafimow JH; Andersson GB
    Ergonomics; 1992 Apr; 35(4):437-44. PubMed ID: 1597174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of isokinetic lifting strength with static strength and maximum acceptable weight with special reference to speed of lifting.
    Garg A; Beller D
    Ergonomics; 1994 Aug; 37(8):1363-74. PubMed ID: 7925260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injury-induced kinematic compensations within the lower back: impact of non-lower back injuries.
    Davis KG; Seol H
    Ergonomics; 2005 Feb; 48(2):135-49. PubMed ID: 15764313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Within-subject variability in low back load in a repetitively performed, mildly constrained lifting task.
    van Dieën JH; Dekkers JJ; Groen V; Toussaint HM; Meijer OG
    Spine (Phila Pa 1976); 2001 Aug; 26(16):1799-804. PubMed ID: 11493854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically and statically determined low back moments during lifting.
    McGill SM; Norman RW
    J Biomech; 1985; 18(12):877-85. PubMed ID: 4077856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using static postures to estimate spinal loading during dynamic lifts with participant-specific thoracolumbar musculoskeletal models.
    Banks JJ; Alemi MM; Allaire BT; Lynch AC; Bouxsein ML; Anderson DE
    Appl Ergon; 2023 Jan; 106():103869. PubMed ID: 36055036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic forces acting on the lumbar spine during manual handling. Can they be estimated using electromyographic techniques alone?
    Dolan P; Kingma I; van Dieen J; de Looze MP; Toussaint HM; Baten CT; Adams MA
    Spine (Phila Pa 1976); 1999 Apr; 24(7):698-703. PubMed ID: 10209801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.