These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22953450)

  • 1. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems.
    Li C; Yang YJ; Yu J; Zhang TQ; Mao X; Shao W
    Water Environ Res; 2012 Aug; 84(8):656-61. PubMed ID: 22953450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution.
    Zhao Y; Yang YJ; Shao Y; Neal J; Zhang T
    Water Res; 2018 Sep; 141():32-45. PubMed ID: 29753975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.
    Al-Jasser AO
    Water Res; 2007 Jan; 41(2):387-96. PubMed ID: 17140619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study.
    Liao P; Zhang T; Fang L; Jiang R; Wu G
    Sci Total Environ; 2022 Dec; 851(Pt 1):158115. PubMed ID: 35985588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of copper(II) and copper oxides on THMs formation in copper pipe.
    Li B; Qu J; Liu H; Hu C
    Chemosphere; 2007 Aug; 68(11):2153-60. PubMed ID: 17363030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The decay of chlorine associated with the pipe wall in water distribution systems.
    Hallam NB; West JR; Forster CF; Powell JC; Spencer I
    Water Res; 2002 Aug; 36(14):3479-88. PubMed ID: 12230193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfadiazine destruction by chlorination in a pilot-scale water distribution system: Kinetics, pathway, and bacterial community structure.
    Dong F; Li C; Crittenden J; Zhang T; Lin Q; He G; Zhang W; Luo J
    J Hazard Mater; 2019 Mar; 366():88-97. PubMed ID: 30502576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism.
    Zhang K; Cao C; Zhou X; Zheng F; Sun Y; Cai Z; Fu J
    Water Res; 2018 Mar; 131():11-21. PubMed ID: 29258001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of bisphenol A in water distribution systems: a pilot-scale study.
    Li C; Wang Z; Yang YJ; Liu J; Mao X; Zhang Y
    Chemosphere; 2015 Apr; 125():86-93. PubMed ID: 25550112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study.
    Xu J; Huang C; Shi X; Dong S; Yuan B; Nguyen TH
    Sci Total Environ; 2018 Nov; 642():516-525. PubMed ID: 29908510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of advanced treatment on chlorine decay in metallic pipes.
    Rossman LA
    Water Res; 2006 Jul; 40(13):2493-502. PubMed ID: 16806395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DBP formation kinetics in a simulated distribution system.
    Rossman LA; Brown RA; Singer PC; Nuckols JR
    Water Res; 2001 Oct; 35(14):3483-9. PubMed ID: 11547872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2017 Nov; 125():427-437. PubMed ID: 28892770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating effects of bromide ions on trihalomethanes and developing model for predicting bromodichloromethane in drinking water.
    Chowdhury S; Champagne P; James McLellan P
    Water Res; 2010 Apr; 44(7):2349-59. PubMed ID: 20080279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variations of biological stability and disinfection byproduct in water distribution systems and their correlations].
    Fang H; Lü XW; Lu JL; Zhu XC
    Huan Jing Ke Xue; 2007 Sep; 28(9):2030-4. PubMed ID: 17990552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of trihalomethanes formation potential in Karoon River water, Iran.
    Fooladvand M; Ramavandi B; Zandi K; Ardestani M
    Environ Monit Assess; 2011 Jul; 178(1-4):63-71. PubMed ID: 20824334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential.
    Navalon S; Alvaro M; Garcia H
    Water Res; 2008 Aug; 42(14):3990-4000. PubMed ID: 18692215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.