These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2295365)

  • 1. Embryonic development of the innervation of the locust extensor tibiae muscle by identified neurons: formation and elimination of inappropriate axon branches.
    Myers CM; Whitington PM; Ball EE
    Dev Biol; 1990 Jan; 137(1):194-206. PubMed ID: 2295365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon growth from limb motorneurons in the locust embryo: the effect of target limb removal on the pattern of axon branching in the periphery.
    Whitington PM; Seifert E
    Dev Biol; 1984 Dec; 106(2):438-49. PubMed ID: 6500182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-reversible photo-axotomy used to investigate the role of extensor muscle tension in controlling the kick motor programme of grasshoppers.
    Heitler WJ
    Eur J Neurosci; 1995 May; 7(5):981-92. PubMed ID: 7613633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributions of nerve and muscle fibre types in locust jumping muscle.
    Hoyle G
    J Exp Biol; 1978 Apr; 73():205-33. PubMed ID: 650146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
    Newland PL; Kondoh Y
    J Neurophysiol; 1997 Jun; 77(6):3297-310. PubMed ID: 9212276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular plasticity in the locust after permanent removal of an excitatory motoneuron of the extensor tibiae muscle.
    Büschges A; Djokaj S; Bässler D; Bässler U; Rathmayer W
    J Neurobiol; 2000 Jan; 42(1):148-59. PubMed ID: 10623908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure of identified fast excitatory, slow excitatory and inhibitory neuromuscular junctions in the locust.
    Titmus MJ
    J Neurocytol; 1981 Jun; 10(3):363-85. PubMed ID: 7310457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.
    Evans PD; Siegler MV
    J Physiol; 1982 Mar; 324():93-112. PubMed ID: 6808122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collateral sprouting of insect motorneurons.
    Donaldson PL; Josephson RK
    J Comp Neurol; 1981 Feb; 196(2):317-27. PubMed ID: 6260836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of terminal fields in the absence of competitive interactions among primary motoneurons in the zebrafish.
    Liu DW; Westerfield M
    J Neurosci; 1990 Dec; 10(12):3947-59. PubMed ID: 2269893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
    Wilson JA
    J Neurobiol; 1979 Jan; 10(1):41-65. PubMed ID: 521809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the receptive fields of leech mechanosensory neurons during embryonic development.
    Kramer AP; Kuwada JY
    J Neurosci; 1983 Dec; 3(12):2474-86. PubMed ID: 6317810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the segmental innervation of the chick forelimb.
    Pettigrew AG; Lindeman R; Bennett MR
    J Embryol Exp Morphol; 1979 Jan; 49():115-37. PubMed ID: 448263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth cone choices of Drosophila motoneurons in response to muscle fiber mismatch.
    Chiba A; Hing H; Cash S; Keshishian H
    J Neurosci; 1993 Feb; 13(2):714-32. PubMed ID: 8426233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural comparison of a homologous neuron in gryllid and acridid insects.
    Wilson JA; Phillips CE; Adams ME; Huber F
    J Neurobiol; 1982 Sep; 13(5):459-67. PubMed ID: 7130982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets.
    Ball EE; Truman JW
    J Comp Neurol; 1998 Apr; 394(1):1-13. PubMed ID: 9550138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphological correlate of target recognition by regenerating motor axons in the cockroach.
    Denburg JL; Caldwell RT
    J Comp Neurol; 1992 Jan; 315(3):364-74. PubMed ID: 1740549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pattern of avian intramuscular nerve branching is determined by the innervating motoneuron and its level of polysialic acid.
    Rafuse VF; Landmesser LT
    J Neurosci; 2000 Feb; 20(3):1056-65. PubMed ID: 10648711
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.