These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2295368)

  • 1. Segregation of oral from aboral ectoderm precursors is completed at fifth cleavage in the embryogenesis of Strongylocentrotus purpuratus.
    Cameron RA; Fraser SE; Britten RJ; Davidson EH
    Dev Biol; 1990 Jan; 137(1):77-85. PubMed ID: 2295368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oral-aboral axis of a sea urchin embryo is specified by first cleavage.
    Cameron RA; Fraser SE; Britten RJ; Davidson EH
    Development; 1989 Aug; 106(4):641-7. PubMed ID: 2562659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm.
    Cameron RA; Britten RJ; Davidson EH
    Dev Biol; 1993 Dec; 160(2):369-76. PubMed ID: 8253270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis.
    Tomlinson CR; Klein WH
    Mol Reprod Dev; 1990 Apr; 25(4):328-38. PubMed ID: 2328125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.
    Satoh K; Kominami T
    Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere.
    Yoshikawa S
    Dev Growth Differ; 1997 Jun; 39(3):319-27. PubMed ID: 9227898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell type specification during sea urchin development.
    Cameron RA; Davidson EH
    Trends Genet; 1991 Jul; 7(7):212-8. PubMed ID: 1887502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1990 Sep; 141(1):41-54. PubMed ID: 2391005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
    Hurley DL; Angerer LM; Angerer RC
    Development; 1989 Jul; 106(3):567-79. PubMed ID: 2480880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.