These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22953684)

  • 41. Immunohistochemical expression of growth factors in subacute thyroiditis and their effects on thyroid folliculogenesis and angiogenesis in collagen gel matrix culture.
    Toda S; Nishimura T; Yamada S; Koike N; Yonemitsu N; Watanabe K; Matsumura S; Gärtner R; Sugihara H
    J Pathol; 1999 Aug; 188(4):415-22. PubMed ID: 10440753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.
    Buckley CT; Meyer EG; Kelly DJ
    Tissue Eng Part A; 2012 Feb; 18(3-4):382-96. PubMed ID: 21919793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Application of transforming growth factor-beta(1) on construction of tissue engineering heart valves: experimental in vitro].
    Dong NG; Qiu YM; Shi JW
    Zhonghua Yi Xue Za Zhi; 2007 Jun; 87(23):1622-6. PubMed ID: 17803853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro.
    Guiducci S; Manetti M; Romano E; Mazzanti B; Ceccarelli C; Dal Pozzo S; Milia AF; Bellando-Randone S; Fiori G; Conforti ML; Saccardi R; Ibba-Manneschi L; Matucci-Cerinic M
    Ann Rheum Dis; 2011 Nov; 70(11):2011-21. PubMed ID: 21821866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene.
    Guo X; Zheng Q; Yang S; Shao Z; Yuan Q; Pan Z; Tang S; Liu K; Quan D
    Biomed Mater; 2006 Dec; 1(4):206-15. PubMed ID: 18458408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Opposite effects of transforming growth factor-β1 and vascular endothelial growth factor on the degeneration of aortic valvular interstitial cell are modified by the extracellular matrix protein fibronectin: implications for heart valve engineering.
    Gwanmesia P; Ziegler H; Eurich R; Barth M; Kamiya H; Karck M; Lichtenberg A; Akhyari P
    Tissue Eng Part A; 2010 Dec; 16(12):3737-46. PubMed ID: 20673026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcification and cellularity in human aortic heart valve tissue determine the differentiation of bone-marrow-derived cells.
    Leskelä HV; Satta J; Oiva J; Eriksen H; Juha R; Korkiamäki P; Ivaska KK; Soini Y; Lehenkari P
    J Mol Cell Cardiol; 2006 Oct; 41(4):642-9. PubMed ID: 16938307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.
    Sahoo S; Toh SL; Goh JC
    Biomaterials; 2010 Apr; 31(11):2990-8. PubMed ID: 20089300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices.
    Duan B; Hockaday LA; Das S; Xu C; Butcher JT
    Tissue Eng Part C Methods; 2015 Aug; 21(8):795-807. PubMed ID: 25594437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments.
    Moreau JE; Bramono DS; Horan RL; Kaplan DL; Altman GH
    Tissue Eng Part A; 2008 Jul; 14(7):1161-72. PubMed ID: 18380592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells.
    Di Liddo R; Aguiari P; Barbon S; Bertalot T; Mandoli A; Tasso A; Schrenk S; Iop L; Gandaglia A; Parnigotto PP; Conconi MT; Gerosa G
    Int J Nanomedicine; 2016; 11():5041-5055. PubMed ID: 27789941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Vivo Response of Acellular Porcine Pericardial for Tissue Engineered Transcatheter Aortic Valves.
    Khorramirouz R; Go JL; Noble C; Morse D; Lerman A; Young MD
    Sci Rep; 2019 Jan; 9(1):1094. PubMed ID: 30705386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Serum deprivation improves seeding and repopulation of acellular matrices with valvular interstitial cells.
    Cushing MC; Jaeggli MP; Masters KS; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2005 Oct; 75(1):232-41. PubMed ID: 16088888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1.
    Dvorin EL; Wylie-Sears J; Kaushal S; Martin DP; Bischoff J
    Tissue Eng; 2003 Jun; 9(3):487-93. PubMed ID: 12857416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals-an in vitro study.
    Schenke-Layland K; Opitz F; Gross M; Döring C; Halbhuber KJ; Schirrmeister F; Wahlers T; Stock UA
    Cardiovasc Res; 2003 Dec; 60(3):497-509. PubMed ID: 14659795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells.
    Ramaswamy S; Gottlieb D; Engelmayr GC; Aikawa E; Schmidt DE; Gaitan-Leon DM; Sales VL; Mayer JE; Sacks MS
    Biomaterials; 2010 Feb; 31(6):1114-25. PubMed ID: 19944458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular response to transforming growth factor-beta1 and basic fibroblast growth factor depends on release kinetics and extracellular matrix interactions.
    Dinbergs ID; Brown L; Edelman ER
    J Biol Chem; 1996 Nov; 271(47):29822-9. PubMed ID: 8939921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ constructive myocardial remodeling of extracellular matrix patch enhanced with controlled growth factor release.
    Tanaka A; Kawaji K; Patel AR; Tabata Y; Burke MC; Gupta MP; Ota T
    J Thorac Cardiovasc Surg; 2015 Nov; 150(5):1280-90.e2. PubMed ID: 26344683
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo cellular repopulation of tubular elastin scaffolds mediated by basic fibroblast growth factor.
    Kurane A; Simionescu DT; Vyavahare NR
    Biomaterials; 2007 Jun; 28(18):2830-8. PubMed ID: 17368531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface glycan pattern of canine, equine, and ovine bone marrow-derived mesenchymal stem cells.
    Desantis S; Accogli G; Crovace A; Francioso EG; Crovace AM
    Cytometry A; 2018 Jan; 93(1):73-81. PubMed ID: 28906588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.