BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22953716)

  • 1. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2012 Oct; 116(39):11845-56. PubMed ID: 22953716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2010 Nov; 114(44):14028-40. PubMed ID: 20945881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of double-helical RNAs composed of CUG/CUG- and CUG/CGG-repeats.
    Tamjar J; Katorcha E; Popov A; Malinina L
    J Biomol Struct Dyn; 2012; 30(5):505-23. PubMed ID: 22731704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches.
    Pan B; Mitra SN; Sundaralingam M
    J Mol Biol; 1998 Nov; 283(5):977-84. PubMed ID: 9799637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of two RNA octamers containing tandem G.A base pairs.
    Jang SB; Baeyens K; Jeong MS; SantaLucia J; Turner D; Holbrook SR
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):829-35. PubMed ID: 15103128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics, and elasticity of free 16s rRNA helix 44 studied by molecular dynamics simulations.
    Réblová K; Lankas F; Rázga F; Krasovska MV; Koca J; Sponer J
    Biopolymers; 2006 Aug; 82(5):504-20. PubMed ID: 16538608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G.A and U.U mismatches can stabilize RNA internal loops of three nucleotides.
    Schroeder S; Kim J; Turner DH
    Biochemistry; 1996 Dec; 35(50):16105-9. PubMed ID: 8973181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
    Mokdad A; Krasovska MV; Sponer J; Leontis NB
    Nucleic Acids Res; 2006; 34(5):1326-41. PubMed ID: 16522645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex.
    Schneider C; Brandl M; Sühnel J
    J Mol Biol; 2001 Jan; 305(4):659-67. PubMed ID: 11162082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics correctly models the unusual major conformation of the GAGU RNA internal loop and with NMR reveals an unusual minor conformation.
    Spasic A; Kennedy SD; Needham L; Manoharan M; Kierzek R; Turner DH; Mathews DH
    RNA; 2018 May; 24(5):656-672. PubMed ID: 29434035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles.
    Panigrahi S; Pal R; Bhattacharyya D
    J Biomol Struct Dyn; 2011 Dec; 29(3):541-56. PubMed ID: 22066539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a consensus view of duplex RNA flexibility.
    Faustino I; Pérez A; Orozco M
    Biophys J; 2010 Sep; 99(6):1876-85. PubMed ID: 20858433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G.U base pairs.
    Utsunomiya R; Suto K; Balasundaresan D; Fukamizu A; Kumar PK; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):331-8. PubMed ID: 16510980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational determinants of tandem GU mismatches in RNA: insights from molecular dynamics simulations and quantum mechanical calculations.
    Pan Y; Priyakumar UD; MacKerell AD
    Biochemistry; 2005 Feb; 44(5):1433-43. PubMed ID: 15683228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results.
    Langley DR
    J Biomol Struct Dyn; 1998 Dec; 16(3):487-509. PubMed ID: 10052609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of r(GUGUGUA)dC with tandem G x U/U x G wobble pairs with strand slippage.
    Biswas R; Sundaralingam M
    J Mol Biol; 1997 Jul; 270(3):511-9. PubMed ID: 9237915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of A-RNA simulations on the choice of the force field and salt strength.
    Besseová I; Otyepka M; Réblová K; Sponer J
    Phys Chem Chem Phys; 2009 Dec; 11(45):10701-11. PubMed ID: 20145814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.