These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 22953753)
1. Iron particle size effects for direct production of lower olefins from synthesis gas. Torres Galvis HM; Bitter JH; Davidian T; Ruitenbeek M; Dugulan AI; de Jong KP J Am Chem Soc; 2012 Oct; 134(39):16207-15. PubMed ID: 22953753 [TBL] [Abstract][Full Text] [Related]
2. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Bezemer GL; Bitter JH; Kuipers HP; Oosterbeek H; Holewijn JE; Xu X; Kapteijn F; van Dillen AJ; de Jong KP J Am Chem Soc; 2006 Mar; 128(12):3956-64. PubMed ID: 16551103 [TBL] [Abstract][Full Text] [Related]
3. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Torres Galvis HM; Bitter JH; Khare CB; Ruitenbeek M; Dugulan AI; de Jong KP Science; 2012 Feb; 335(6070):835-8. PubMed ID: 22344440 [TBL] [Abstract][Full Text] [Related]
4. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts. Xie J; Torres Galvis HM; Koeken AC; Kirilin A; Dugulan AI; Ruitenbeek M; de Jong KP ACS Catal; 2016 Jun; 6(6):4017-4024. PubMed ID: 27330847 [TBL] [Abstract][Full Text] [Related]
5. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303 [TBL] [Abstract][Full Text] [Related]
6. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. den Breejen JP; Radstake PB; Bezemer GL; Bitter JH; Frøseth V; Holmen A; de Jong KP J Am Chem Soc; 2009 May; 131(20):7197-203. PubMed ID: 19402702 [TBL] [Abstract][Full Text] [Related]
7. Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins. Oschatz M; Hofmann JP; van Deelen TW; Lamme WS; Krans NA; Hensen EJ; de Jong KP ChemCatChem; 2017 Feb; 9(4):620-628. PubMed ID: 28286582 [TBL] [Abstract][Full Text] [Related]
8. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477 [TBL] [Abstract][Full Text] [Related]
9. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
10. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417 [TBL] [Abstract][Full Text] [Related]
11. Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. Yang J; Tveten EZ; Chen D; Holmen A Langmuir; 2010 Nov; 26(21):16558-67. PubMed ID: 20973587 [TBL] [Abstract][Full Text] [Related]
12. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Zhou X; Ji J; Wang D; Duan X; Qian G; Chen D; Zhou X Chem Commun (Camb); 2015 May; 51(42):8853-6. PubMed ID: 25920480 [TBL] [Abstract][Full Text] [Related]
14. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. Abelló S; Montané D ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868 [TBL] [Abstract][Full Text] [Related]
15. Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and strategy. Zhuo O; Yang L; Gao F; Xu B; Wu Q; Fan Y; Zhang Y; Jiang Y; Huang R; Wang X; Hu Z Chem Sci; 2019 Jun; 10(24):6083-6090. PubMed ID: 31360413 [TBL] [Abstract][Full Text] [Related]
16. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Santos VP; Wezendonk TA; Jaén JJ; Dugulan AI; Nasalevich MA; Islam HU; Chojecki A; Sartipi S; Sun X; Hakeem AA; Koeken AC; Ruitenbeek M; Davidian T; Meima GR; Sankar G; Kapteijn F; Makkee M; Gascon J Nat Commun; 2015 Mar; 6():6451. PubMed ID: 25740709 [TBL] [Abstract][Full Text] [Related]
17. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
18. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas. Koeken AC; Torres Galvis HM; Davidian T; Ruitenbeek M; de Jong KP Angew Chem Int Ed Engl; 2012 Jul; 51(29):7190-3. PubMed ID: 22693165 [TBL] [Abstract][Full Text] [Related]
19. Influence of Promotion on the Growth of Anchored Colloidal Iron Oxide Nanoparticles during Synthesis Gas Conversion. Krans NA; Weber JL; van den Bosch W; Zečević J; de Jongh PE; de Jong KP ACS Catal; 2020 Feb; 10(3):1913-1922. PubMed ID: 32064142 [TBL] [Abstract][Full Text] [Related]