BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22953845)

  • 1. Children's hedonic response to berry products: Effect of chemical composition of berries and hTAS2R38 genotype on liking.
    Suomela JP; Vaarno J; Sandell M; Lehtonen HM; Tahvonen R; Viikari J; Kallio H
    Food Chem; 2012 Dec; 135(3):1210-9. PubMed ID: 22953845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype.
    Laaksonen O; Ahola J; Sandell M
    Appetite; 2013 Feb; 61(1):85-96. PubMed ID: 23168232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hTAS2R38 genotype is associated with sugar and candy consumption in preschool boys.
    Hoppu U; Laitinen K; Jaakkola J; Sandell M
    J Hum Nutr Diet; 2015 Jan; 28 Suppl 1():45-51. PubMed ID: 24912558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutin composition of five finnish berries.
    Kallio H; Nieminen R; Tuomasjukka S; Hakala M
    J Agric Food Chem; 2006 Jan; 54(2):457-62. PubMed ID: 16417304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of various polyphenols from a diet containing moderate amounts of berries.
    Koli R; Erlund I; Jula A; Marniemi J; Mattila P; Alfthan G
    J Agric Food Chem; 2010 Apr; 58(7):3927-32. PubMed ID: 20073463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe).
    Lätti AK; Riihinen KR; Jaakola L
    Phytochemistry; 2011 Jun; 72(8):810-5. PubMed ID: 21382629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of protein and lipid oxidation in liposomes by berry phenolics.
    Viljanen K; Kylli P; Kivikari R; Heinonen M
    J Agric Food Chem; 2004 Dec; 52(24):7419-24. PubMed ID: 15563229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of quercetin from berries and the diet.
    Erlund I; Freese R; Marniemi J; Hakala P; Alfthan G
    Nutr Cancer; 2006; 54(1):13-7. PubMed ID: 16800769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants.
    Tian Y; Liimatainen J; Alanne AL; Lindstedt A; Liu P; Sinkkonen J; Kallio H; Yang B
    Food Chem; 2017 Apr; 220():266-281. PubMed ID: 27855899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion.
    Lehtonen HM; Lehtinen O; Suomela JP; Viitanen M; Kallio H
    J Agric Food Chem; 2010 Jan; 58(1):620-7. PubMed ID: 20050706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.
    Hokkanen J; Mattila S; Jaakola L; Pirttilä AM; Tolonen A
    J Agric Food Chem; 2009 Oct; 57(20):9437-47. PubMed ID: 19788243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liking of anthocyanin-rich juices by children and adolescents.
    Drossard C; Fröhling B; Bolzenius K; Dietrich H; Kunz C; Kersting M
    Appetite; 2012 Apr; 58(2):623-8. PubMed ID: 22248708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinine sensitivity influences the acceptance of sea-buckthorn and grapefruit juices in 9- to 11-year-old children.
    Hartvig D; Hausner H; Wendin K; Bredie WL
    Appetite; 2014 Mar; 74():70-8. PubMed ID: 24291404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times.
    Yang B; Linko AM; Adlercreutz H; Kallio H
    J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity.
    Ehala S; Vaher M; Kaljurand M
    J Agric Food Chem; 2005 Aug; 53(16):6484-90. PubMed ID: 16076138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fibres and polyphenols in sea buckthorn (Hippophaë rhamnoides) extraction residues delay postprandial lipemia.
    Linderborg KM; Lehtonen HM; Järvinen R; Viitanen M; Kallio H
    Int J Food Sci Nutr; 2012 Jun; 63(4):483-90. PubMed ID: 22098442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L.
    Ieri F; Martini S; Innocenti M; Mulinacci N
    Phytochem Anal; 2013; 24(5):467-75. PubMed ID: 23868799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.).
    Liu P; Lindstedt A; Markkinen N; Sinkkonen J; Suomela JP; Yang B
    J Agric Food Chem; 2014 Dec; 62(49):12015-26. PubMed ID: 25408277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Berry phenolics selectively inhibit the growth of intestinal pathogens.
    Puupponen-Pimiä R; Nohynek L; Hartmann-Schmidlin S; Kähkönen M; Heinonen M; Määttä-Riihinen K; Oksman-Caldentey KM
    J Appl Microbiol; 2005; 98(4):991-1000. PubMed ID: 15752346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: a kinetic study on storage stability and the determination of processing effects.
    Gutzeit D; Baleanu G; Winterhalter P; Jerz G
    J Food Sci; 2008 Nov; 73(9):C615-20. PubMed ID: 19021790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.