These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22953884)
1. Deconvolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry isotope patterns to determine ratios of A-type to B-type interflavan bonds in cranberry proanthocyanidins. Feliciano RP; Krueger CG; Shanmuganayagam D; Vestling MM; Reed JD Food Chem; 2012 Dec; 135(3):1485-93. PubMed ID: 22953884 [TBL] [Abstract][Full Text] [Related]
2. Identification of A-Type Proanthocyanidins in Cranberry-Based Foods and Dietary Supplements by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, First Action Method: 2019.05. Esquivel-Alvarado D; Alfaro-Viquez E; Krueger CG; Vestling MM; Reed JD J AOAC Int; 2021 Mar; 104(1):223-231. PubMed ID: 33751068 [TBL] [Abstract][Full Text] [Related]
3. Classification of proanthocyanidin profiles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra data combined with multivariate analysis. Esquivel-Alvarado D; Alfaro-Viquez E; Krueger CG; Vestling MM; Reed JD Food Chem; 2021 Jan; 336():127667. PubMed ID: 32758802 [TBL] [Abstract][Full Text] [Related]
4. Composition of Anthocyanins and Proanthocyanidins in Three Tropical Esquivel-Alvarado D; Muñoz-Arrieta R; Alfaro-Viquez E; Madrigal-Carballo S; Krueger CG; Reed JD J Agric Food Chem; 2020 Mar; 68(10):2872-2879. PubMed ID: 31244206 [TBL] [Abstract][Full Text] [Related]
5. Comparison of isolated cranberry (Vaccinium macrocarpon Ait.) proanthocyanidins to catechin and procyanidins A2 and B2 for use as standards in the 4-(dimethylamino)cinnamaldehyde assay. Feliciano RP; Shea MP; Shanmuganayagam D; Krueger CG; Howell AB; Reed JD J Agric Food Chem; 2012 May; 60(18):4578-85. PubMed ID: 22533362 [TBL] [Abstract][Full Text] [Related]
6. Supercritical fluid extraction (SFE) of cranberries does not extract oligomeric proanthocyanidins (PAC) but does alter the chromatography and bioactivity of PAC fractions extracted from SFE residues. Feliciano RP; Meudt JJ; Shanmuganayagam D; Metzger BT; Krueger CG; Reed JD J Agric Food Chem; 2014 Aug; 62(31):7730-7. PubMed ID: 25019644 [TBL] [Abstract][Full Text] [Related]
7. Methods to determine effects of cranberry proanthocyanidins on extraintestinal infections: Relevance for urinary tract health. Feliciano RP; Krueger CG; Reed JD Mol Nutr Food Res; 2015 Jul; 59(7):1292-306. PubMed ID: 25917127 [TBL] [Abstract][Full Text] [Related]
8. Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon). Carpenter JL; Caruso FL; Tata A; Vorsa N; Neto CC J Sci Food Agric; 2014 Oct; 94(13):2738-45. PubMed ID: 24532348 [TBL] [Abstract][Full Text] [Related]
9. Ratio of "A-type" to "B-type" proanthocyanidin interflavan bonds affects extra-intestinal pathogenic Escherichia coli invasion of gut epithelial cells. Feliciano RP; Meudt JJ; Shanmuganayagam D; Krueger CG; Reed JD J Agric Food Chem; 2014 May; 62(18):3919-25. PubMed ID: 24215458 [TBL] [Abstract][Full Text] [Related]
10. Advantages of a validated UPLC-MS/MS standard addition method for the quantification of A-type dimeric and trimeric proanthocyanidins in cranberry extracts in comparison with well-known quantification methods. van Dooren I; Foubert K; Theunis M; Naessens T; Pieters L; Apers S J Pharm Biomed Anal; 2018 Jan; 148():32-41. PubMed ID: 28950214 [TBL] [Abstract][Full Text] [Related]
11. Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health. Krueger CG; Reed JD; Feliciano RP; Howell AB Anal Bioanal Chem; 2013 May; 405(13):4385-95. PubMed ID: 23397091 [TBL] [Abstract][Full Text] [Related]
12. Extraction and normal-phase HPLC-fluorescence-electrospray MS characterization and quantification of procyanidins in cranberry extracts. Wallace TC; Giusti MM J Food Sci; 2010 Oct; 75(8):C690-6. PubMed ID: 21535487 [TBL] [Abstract][Full Text] [Related]
17. Chitosomes loaded with cranberry proanthocyanidins attenuate the bacterial lipopolysaccharide-induced expression of iNOS and COX-2 in raw 264.7 macrophages. Madrigal-Carballo S; Rodríguez G; Sibaja M; Reed JD; Vila AO; Molina F J Liposome Res; 2009; 19(3):189-96. PubMed ID: 19694605 [TBL] [Abstract][Full Text] [Related]
18. Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. Patel KD; Scarano FJ; Kondo M; Hurta RA; Neto CC J Agric Food Chem; 2011 Dec; 59(24):12864-73. PubMed ID: 22066866 [TBL] [Abstract][Full Text] [Related]
19. Structural analysis of A-type or B-type highly polymeric proanthocyanidins by thiolytic degradation and the implication in their inhibitory effects on pancreatic lipase. Kimura H; Ogawa S; Akihiro T; Yokota K J Chromatogr A; 2011 Oct; 1218(42):7704-12. PubMed ID: 21803362 [TBL] [Abstract][Full Text] [Related]
20. Influence of Degree-of-Polymerization and Linkage on the Quantification of Proanthocyanidins using 4-Dimethylaminocinnamaldehyde (DMAC) Assay. Wang Y; Singh AP; Hurst WJ; Glinski JA; Koo H; Vorsa N J Agric Food Chem; 2016 Mar; 64(11):2190-9. PubMed ID: 26923226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]