These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 22954469)
1. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells. Garijo N; Manzano R; Osta R; Perez MA J Theor Biol; 2012 Dec; 314():1-9. PubMed ID: 22954469 [TBL] [Abstract][Full Text] [Related]
2. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. Pérez MA; Prendergast PJ J Biomech; 2007; 40(10):2244-53. PubMed ID: 17173925 [TBL] [Abstract][Full Text] [Related]
3. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Yablonka-Reuveni Z; Anderson JE Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933 [TBL] [Abstract][Full Text] [Related]
4. Impact of static magnetic fields on human myoblast cell cultures. Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362 [TBL] [Abstract][Full Text] [Related]
5. The skeletal muscle satellite cell: the stem cell that came in from the cold. Zammit PS; Partridge TA; Yablonka-Reuveni Z J Histochem Cytochem; 2006 Nov; 54(11):1177-91. PubMed ID: 16899758 [TBL] [Abstract][Full Text] [Related]
6. [Effects of bone morphogenetic protein on proliferation and collagen-1 synthesis of skeletal muscle satellite cells]. Wei KH; Pei GX; Jin D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Nov; 16(6):422-5. PubMed ID: 12508440 [TBL] [Abstract][Full Text] [Related]
7. Six family genes control the proliferation and differentiation of muscle satellite cells. Yajima H; Motohashi N; Ono Y; Sato S; Ikeda K; Masuda S; Yada E; Kanesaki H; Miyagoe-Suzuki Y; Takeda S; Kawakami K Exp Cell Res; 2010 Oct; 316(17):2932-44. PubMed ID: 20696153 [TBL] [Abstract][Full Text] [Related]
8. Sex, fiber-type, and age dependent in vitro proliferation of mouse muscle satellite cells. Manzano R; Toivonen JM; Calvo AC; Miana-Mena FJ; Zaragoza P; Muñoz MJ; Montarras D; Osta R J Cell Biochem; 2011 Oct; 112(10):2825-36. PubMed ID: 21608019 [TBL] [Abstract][Full Text] [Related]
9. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. Ono Y; Masuda S; Nam HS; Benezra R; Miyagoe-Suzuki Y; Takeda S J Cell Sci; 2012 Mar; 125(Pt 5):1309-17. PubMed ID: 22349695 [TBL] [Abstract][Full Text] [Related]
10. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle. Koning M; Werker PM; van der Schaft DW; Bank RA; Harmsen MC Tissue Eng Part A; 2012 May; 18(9-10):889-98. PubMed ID: 22070522 [TBL] [Abstract][Full Text] [Related]
12. Isolation and culture of mouse satellite cells. Musarò A; Barberi L Methods Mol Biol; 2010; 633():101-11. PubMed ID: 20204623 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Koning M; Werker PM; van Luyn MJ; Harmsen MC Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665 [TBL] [Abstract][Full Text] [Related]
14. Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently. Rouger K; Brault M; Daval N; Leroux I; Guigand L; Lesoeur J; Fernandez B; Cherel Y Cell Tissue Res; 2004 Sep; 317(3):319-26. PubMed ID: 15322909 [TBL] [Abstract][Full Text] [Related]
15. Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells. Li X; McFarland DC; Velleman SG Domest Anim Endocrinol; 2008 Oct; 35(3):263-73. PubMed ID: 18650056 [TBL] [Abstract][Full Text] [Related]
16. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. Stern-Straeter J; Bonaterra GA; Kassner SS; Zügel S; Hörmann K; Kinscherf R; Goessler UR J Tissue Eng Regen Med; 2011 Aug; 5(8):e197-206. PubMed ID: 21370490 [TBL] [Abstract][Full Text] [Related]
17. The role of myostatin in chicken (Gallus domesticus) myogenic satellite cell proliferation and differentiation. McFarland DC; Velleman SG; Pesall JE; Liu C Gen Comp Endocrinol; 2007 May; 151(3):351-7. PubMed ID: 17362950 [TBL] [Abstract][Full Text] [Related]
18. Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. Villena J; Brandan E J Cell Physiol; 2004 Feb; 198(2):169-78. PubMed ID: 14603519 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of primary skeletal muscle satellite cells from rats. Liu Y; Chen S; Li W; Du H; Zhu W Toxicol Mech Methods; 2012 Nov; 22(9):721-5. PubMed ID: 22901082 [TBL] [Abstract][Full Text] [Related]