BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22954469)

  • 1. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.
    Garijo N; Manzano R; Osta R; Perez MA
    J Theor Biol; 2012 Dec; 314():1-9. PubMed ID: 22954469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation.
    Pérez MA; Prendergast PJ
    J Biomech; 2007; 40(10):2244-53. PubMed ID: 17173925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers.
    Yablonka-Reuveni Z; Anderson JE
    Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The skeletal muscle satellite cell: the stem cell that came in from the cold.
    Zammit PS; Partridge TA; Yablonka-Reuveni Z
    J Histochem Cytochem; 2006 Nov; 54(11):1177-91. PubMed ID: 16899758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of bone morphogenetic protein on proliferation and collagen-1 synthesis of skeletal muscle satellite cells].
    Wei KH; Pei GX; Jin D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Nov; 16(6):422-5. PubMed ID: 12508440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six family genes control the proliferation and differentiation of muscle satellite cells.
    Yajima H; Motohashi N; Ono Y; Sato S; Ikeda K; Masuda S; Yada E; Kanesaki H; Miyagoe-Suzuki Y; Takeda S; Kawakami K
    Exp Cell Res; 2010 Oct; 316(17):2932-44. PubMed ID: 20696153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex, fiber-type, and age dependent in vitro proliferation of mouse muscle satellite cells.
    Manzano R; Toivonen JM; Calvo AC; Miana-Mena FJ; Zaragoza P; Muñoz MJ; Montarras D; Osta R
    J Cell Biochem; 2011 Oct; 112(10):2825-36. PubMed ID: 21608019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle.
    Ono Y; Masuda S; Nam HS; Benezra R; Miyagoe-Suzuki Y; Takeda S
    J Cell Sci; 2012 Mar; 125(Pt 5):1309-17. PubMed ID: 22349695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle.
    Koning M; Werker PM; van der Schaft DW; Bank RA; Harmsen MC
    Tissue Eng Part A; 2012 May; 18(9-10):889-98. PubMed ID: 22070522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and culture of mouse satellite cells.
    Musarò A; Barberi L
    Methods Mol Biol; 2010; 633():101-11. PubMed ID: 20204623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.
    Koning M; Werker PM; van Luyn MJ; Harmsen MC
    Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently.
    Rouger K; Brault M; Daval N; Leroux I; Guigand L; Lesoeur J; Fernandez B; Cherel Y
    Cell Tissue Res; 2004 Sep; 317(3):319-26. PubMed ID: 15322909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells.
    Li X; McFarland DC; Velleman SG
    Domest Anim Endocrinol; 2008 Oct; 35(3):263-73. PubMed ID: 18650056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Zügel S; Hörmann K; Kinscherf R; Goessler UR
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e197-206. PubMed ID: 21370490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of myostatin in chicken (Gallus domesticus) myogenic satellite cell proliferation and differentiation.
    McFarland DC; Velleman SG; Pesall JE; Liu C
    Gen Comp Endocrinol; 2007 May; 151(3):351-7. PubMed ID: 17362950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration.
    Villena J; Brandan E
    J Cell Physiol; 2004 Feb; 198(2):169-78. PubMed ID: 14603519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of primary skeletal muscle satellite cells from rats.
    Liu Y; Chen S; Li W; Du H; Zhu W
    Toxicol Mech Methods; 2012 Nov; 22(9):721-5. PubMed ID: 22901082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Satellite cell self-renewal.
    Collins CA
    Curr Opin Pharmacol; 2006 Jun; 6(3):301-6. PubMed ID: 16563862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.