BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22954602)

  • 1. Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa.
    Zhu X; Kong H; Gao Y; Wu M; Kong F
    J Hazard Mater; 2012 Oct; 237-238():371-5. PubMed ID: 22954602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa.
    Zhang M; Wang X; Tao J; Li S; Hao S; Zhu X; Hong Y
    Ecotoxicol Environ Saf; 2018 Aug; 157():134-142. PubMed ID: 29621704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa.
    Tao Y; Xue B; Yang Z; Yao S; Li S
    Chemosphere; 2015 Jan; 119():719-726. PubMed ID: 25180823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values.
    Huang Y; Pan H; Liu H; Xi Y; Ren D
    Toxicon; 2019 Nov; 169():103-108. PubMed ID: 31494204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
    Liu Y; Chen S; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Oct; 297():83-91. PubMed ID: 25956638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa.
    Wang X; Zhu X; Chen X; Lv B; Wang X; Wang D
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45957-45964. PubMed ID: 33067791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.
    de Morais P; Stoichev T; Basto MC; Ramos V; Vasconcelos VM; Vasconcelos MT
    Water Res; 2014 Apr; 52():63-72. PubMed ID: 24462928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Wang F; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Mar; 285():517-24. PubMed ID: 25559779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures.
    Wan X; Guo Q; Li X; Wang G; Zhao Y
    Toxicon; 2022 Apr; 210():49-57. PubMed ID: 35217023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of linear alkylbenzene sulfonate on the growth and toxin production of Microcystis aeruginosa isolated from Lake Dianchi.
    Wang Z; Zhang J; Song L; Li E; Wang X; Xiao B
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5491-9. PubMed ID: 25382498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Allelopathy of Hydrodictyon reticulatum on Microcystis aeruginosa and its removal capacity on nitrogen and phosphorus].
    Zhao K; Fu HY; Chai T; Zhang MZ; Liu ZF; Chen XJ; Hou M; Xu PC
    Huan Jing Ke Xue; 2011 Aug; 32(8):2267-72. PubMed ID: 22619948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and biochemical responses of Microcystis aeruginosa to phosphine.
    Sheng H; Niu X; Song Q; Li Y; Zhang R; Zou D; Lai S; Yang Z; Tang Z; Zhou S
    Environ Pollut; 2019 Apr; 247():165-171. PubMed ID: 30669084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gibberellin A(3) on growth and microcystin production in Microcystis aeruginosa (cyanophyta).
    Pan X; Chang F; Kang L; Liu Y; Li G; Li D
    J Plant Physiol; 2008 Nov; 165(16):1691-7. PubMed ID: 18395293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological effects of tetracycline antibiotic pollutants on non-target aquatic Microcystis aeruginosa.
    Shang AH; Ye J; Chen DH; Lu XX; Lu HD; Liu CN; Wang LM
    J Environ Sci Health B; 2015; 50(11):809-18. PubMed ID: 26357891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa.
    Zhang Q; Zhou H; Li Z; Zhu J; Zhou C; Zhao M
    Environ Monit Assess; 2016 Nov; 188(11):632. PubMed ID: 27771872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occupational exposure to aromatic hydrocarbons and polycyclic aromatic hydrocarbons at a coke plant.
    Bieniek G; Łusiak A
    Ann Occup Hyg; 2012 Aug; 56(7):796-807. PubMed ID: 22539560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations.
    Vézie C; Rapala J; Vaitomaa J; Seitsonen J; Sivonen K
    Microb Ecol; 2002 May; 43(4):443-54. PubMed ID: 11953809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii.
    Brêda-Alves F; Militão FP; de Alvarenga BF; Miranda PF; de Oliveira Fernandes V; Cordeiro-Araújo MK; Chia MA
    Chemosphere; 2020 Mar; 243():125318. PubMed ID: 31995862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial transformation of intracellular dissolved organic matter from Microcystis aeruginosa and its effect on the binding of pyrene under oxic and anoxic conditions.
    Yang C; Liu Y; Zhu Y; Zhang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6461-6471. PubMed ID: 28070815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.