These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22954677)

  • 21. Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport.
    Sweeney DC; Douglas TA; Davalos RV
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818792490. PubMed ID: 30231776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments.
    Canatella PJ; Black MM; Bonnichsen DM; McKenna C; Prausnitz MR
    Biophys J; 2004 May; 86(5):3260-8. PubMed ID: 15111439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of electroporation in spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Artif Organs; 2004 Apr; 28(4):357-61. PubMed ID: 15084196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse.
    Joshi RP; Nguyen A; Sridhara V; Hu Q; Nuccitelli R; Beebe SJ; Kolb J; Schoenbach KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041920. PubMed ID: 17500934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery.
    Demiryurek Y; Nickaeen M; Zheng M; Yu M; Zahn JD; Shreiber DI; Lin H; Shan JW
    Biochim Biophys Acta; 2015 Aug; 1848(8):1706-14. PubMed ID: 25911207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1076-85. PubMed ID: 22231669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved 3D continuum calculations of ion flux through membrane channels.
    Koumanov A; Zachariae U; Engelhardt H; Karshikoff A
    Eur Biophys J; 2003 Dec; 32(8):689-702. PubMed ID: 12879311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
    Kurnikova MG; Coalson RD; Graf P; Nitzan A
    Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inclusion of memory effects in a dynamic model of electroporation in biological tissues.
    Weinert R; Pereira E; Ramos A
    Artif Organs; 2019 Jul; 43(7):688-693. PubMed ID: 30589443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses.
    Schoenbach KH; Pakhomov AG; Semenov I; Xiao S; Pakhomova ON; Ibey BL
    Bioelectrochemistry; 2015 Jun; 103():44-51. PubMed ID: 25212701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell membrane permeabilization by 12-ns electric pulses: Not a purely dielectric, but a charge-dependent phenomenon.
    Silve A; Leray I; Leguèbe M; Poignard C; Mir LM
    Bioelectrochemistry; 2015 Dec; 106(Pt B):369-78. PubMed ID: 26138342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane electroporation theories: a review.
    Chen C; Smye SW; Robinson MP; Evans JA
    Med Biol Eng Comput; 2006 Mar; 44(1-2):5-14. PubMed ID: 16929916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical descriptions of experimental selectivity measurements in ion channels.
    Gillespie D; Eisenberg RS
    Eur Biophys J; 2002 Oct; 31(6):454-66. PubMed ID: 12355255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection.
    Xie X; Xu AM; Leal-Ortiz S; Cao Y; Garner CC; Melosh NA
    ACS Nano; 2013 May; 7(5):4351-8. PubMed ID: 23597131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model of creation and evolution of stable electropores for DNA delivery.
    Smith KC; Neu JC; Krassowska W
    Biophys J; 2004 May; 86(5):2813-26. PubMed ID: 15111399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation.
    Gowrishankar TR; Weaver JC
    Biochem Biophys Res Commun; 2006 Oct; 349(2):643-53. PubMed ID: 16959217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport.
    Ramírez P; Mafé S; Aguilella VM; Alcaraz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011910. PubMed ID: 12935179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue.
    Langus J; Kranjc M; Kos B; Šuštar T; Miklavčič D
    Sci Rep; 2016 May; 6():26409. PubMed ID: 27211822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of propidium iodide delivery using millisecond electric pulses: experiments.
    Sadik MM; Li J; Shan JW; Shreiber DI; Lin H
    Biochim Biophys Acta; 2013 Apr; 1828(4):1322-8. PubMed ID: 23313458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.