These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22954891)

  • 1. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.
    Kämäräinen J; Knoop H; Stanford NJ; Guerrero F; Akhtar MK; Aro EM; Steuer R; Jones PR
    J Biotechnol; 2012 Nov; 162(1):67-74. PubMed ID: 22954891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement of alkanes for salt tolerance of Cyanobacteria: characterization of alkane synthesis genes from salt-sensitive Synechococcus elongatus PCC7942 and salt-tolerant Aphanothece halophytica.
    Yamamori T; Kageyama H; Tanaka Y; Takabe T
    Lett Appl Microbiol; 2018 Sep; 67(3):299-305. PubMed ID: 30039571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic metabolic pathways for photobiological conversion of CO
    Yunus IS; Wichmann J; Wördenweber R; Lauersen KJ; Kruse O; Jones PR
    Metab Eng; 2018 Sep; 49():201-211. PubMed ID: 30144559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology.
    Yadav I; Rautela A; Kumar S
    World J Microbiol Biotechnol; 2021 Oct; 37(12):201. PubMed ID: 34664124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production.
    Vu TT; Hill EA; Kucek LA; Konopka AE; Beliaev AS; Reed JL
    Biotechnol J; 2013 May; 8(5):619-30. PubMed ID: 23613453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial biosynthesis of alkanes.
    Schirmer A; Rude MA; Li X; Popova E; del Cardayre SB
    Science; 2010 Jul; 329(5991):559-62. PubMed ID: 20671186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.
    Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuels: biomolecular engineering fundamentals and advances.
    Li H; Cann AF; Liao JC
    Annu Rev Chem Biomol Eng; 2010; 1():19-36. PubMed ID: 22432571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae.
    Kang MK; Zhou YJ; Buijs NA; Nielsen J
    Microb Cell Fact; 2017 May; 16(1):74. PubMed ID: 28464872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite "leaves".
    Bernal OI; Mooney CB; Flickinger MC
    Biotechnol Bioeng; 2014 Oct; 111(10):1993-2008. PubMed ID: 24890862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.
    Guan W; Zhao H; Lu X; Wang C; Yang M; Bai F
    J Chromatogr A; 2011 Nov; 1218(45):8289-93. PubMed ID: 21982444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host.
    Ruffing AM
    Front Bioeng Biotechnol; 2014; 2():17. PubMed ID: 25152890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene production with engineered Synechocystis sp PCC 6803 strains.
    Veetil VP; Angermayr SA; Hellingwerf KJ
    Microb Cell Fact; 2017 Feb; 16(1):34. PubMed ID: 28231787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility of hydrocarbon production in cyanobacteria.
    Xie M; Wang W; Zhang W; Chen L; Lu X
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):905-919. PubMed ID: 28032195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals.
    Kitchener RL; Grunden AM
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1617-1628. PubMed ID: 29353309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth.
    Steuer R; Knoop H; Machné R
    J Exp Bot; 2012 Mar; 63(6):2259-74. PubMed ID: 22450165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synechococcus elongatus PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803.
    Gupta A; Bhagwat SG; Sainis JK
    Biometals; 2013 Apr; 26(2):309-19. PubMed ID: 23430150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 for the presence of peroxiredoxins and their transcript regulation under stress.
    Stork T; Michel KP; Pistorius EK; Dietz KJ
    J Exp Bot; 2005 Dec; 56(422):3193-206. PubMed ID: 16284092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.
    Mohammadi R; Fallah-Mehrabadi J; Bidkhori G; Zahiri J; Javad Niroomand M; Masoudi-Nejad A
    Mol Biosyst; 2016 Jul; 12(8):2552-61. PubMed ID: 27265370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.