BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22955157)

  • 1. Determination of the stacking order of curved few-layered graphene systems.
    Hayashi T; Muramatsu H; Shimamoto D; Fujisawa K; Tojo T; Muramoto Y; Yokomae T; Asaoka T; Kim YA; Terrones M; Endo M
    Nanoscale; 2012 Oct; 4(20):6419-24. PubMed ID: 22955157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy.
    Warner JH
    Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking.
    Nelson F; Diebold AC; Hull R
    Microsc Microanal; 2010 Apr; 16(2):194-9. PubMed ID: 20100382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure of interconnected few-layer graphene domains.
    Robertson AW; Bachmatiuk A; Wu YA; Schäffel F; Rellinghaus B; Büchner B; Rümmeli MH; Warner JH
    ACS Nano; 2011 Aug; 5(8):6610-8. PubMed ID: 21819033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic resolution imaging of graphene by transmission electron microscopy.
    Robertson AW; Warner JH
    Nanoscale; 2013 May; 5(10):4079-93. PubMed ID: 23595204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a carbon nanoribbon by spontaneous collapse of a carbon nanotube grown from a γ-Fe nanoparticle via an origami mechanism.
    Kohno H; Komine T; Hasegawa T; Niioka H; Ichikawa S
    Nanoscale; 2013 Jan; 5(2):570-3. PubMed ID: 23196743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantages of aberration correction for HRTEM investigation of complex layer compounds.
    Spiecker E; Garbrecht M; Jäger W; Tillmann K
    J Microsc; 2010 Mar; 237(3):341-6. PubMed ID: 20500393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural distortions in few-layer graphene creases.
    Robertson AW; Bachmatiuk A; Wu YA; Schäffel F; Büchner B; Rümmeli MH; Warner JH
    ACS Nano; 2011 Dec; 5(12):9984-91. PubMed ID: 22122696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic structure of ABC rhombohedral stacked trilayer graphene.
    Warner JH; Mukai M; Kirkland AI
    ACS Nano; 2012 Jun; 6(6):5680-6. PubMed ID: 22663163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographically aligned carbon nanotubes grown on few-layer graphene films.
    Hunley DP; Johnson SL; Stieha JK; Sundararajan A; Meacham AT; Ivanov IN; Strachan DR
    ACS Nano; 2011 Aug; 5(8):6403-9. PubMed ID: 21749089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging layer number and stacking order through formulating Raman fingerprints obtained from hexagonal single crystals of few layer graphene.
    Hwang JS; Lin YH; Hwang JY; Chang R; Chattopadhyay S; Chen CJ; Chen P; Chiang HP; Tsai TR; Chen LC; Chen KH
    Nanotechnology; 2013 Jan; 24(1):015702. PubMed ID: 23221149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open and closed edges of graphene layers.
    Liu Z; Suenaga K; Harris PJ; Iijima S
    Phys Rev Lett; 2009 Jan; 102(1):015501. PubMed ID: 19257205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Kuganathan N; Eyhusen S; Bichoutskaia E; Kaiser U; Khlobystov AN
    J Am Chem Soc; 2012 Feb; 134(6):3073-9. PubMed ID: 22263637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse.
    He M; Dong J; Zhang K; Ding F; Jiang H; Loiseau A; Lehtonen J; Kauppinen EI
    ACS Nano; 2014 Sep; 8(9):9657-63. PubMed ID: 25131158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-layer graphene as a support film for transmission electron microscopy imaging of nanoparticles.
    McBride JR; Lupini AR; Schreuder MA; Smith NJ; Pennycook SJ; Rosenthal SJ
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2886-92. PubMed ID: 20356171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.