These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22955368)
1. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. Calani L; Dall'Asta M; Derlindati E; Scazzina F; Bruni R; Del Rio D J Clin Gastroenterol; 2012 Oct; 46 Suppl():S95-9. PubMed ID: 22955368 [TBL] [Abstract][Full Text] [Related]
2. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Dall'Asta M; Calani L; Tedeschi M; Jechiu L; Brighenti F; Del Rio D Nutrition; 2012 Feb; 28(2):197-203. PubMed ID: 22208556 [TBL] [Abstract][Full Text] [Related]
3. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. Vetrani C; Rivellese AA; Annuzzi G; Adiels M; Borén J; Mattila I; Orešič M; Aura AM J Nutr Biochem; 2016 Jul; 33():111-8. PubMed ID: 27155917 [TBL] [Abstract][Full Text] [Related]
4. Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. van Dorsten FA; Peters S; Gross G; Gomez-Roldan V; Klinkenberg M; de Vos RC; Vaughan EE; van Duynhoven JP; Possemiers S; van de Wiele T; Jacobs DM J Agric Food Chem; 2012 Nov; 60(45):11331-42. PubMed ID: 23072624 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. Cha KH; Song DG; Kim SM; Pan CH J Agric Food Chem; 2012 Jul; 60(29):7152-7. PubMed ID: 22730927 [TBL] [Abstract][Full Text] [Related]
6. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Chen T; Yang CS Crit Rev Food Sci Nutr; 2020; 60(16):2691-2709. PubMed ID: 31446775 [TBL] [Abstract][Full Text] [Related]
7. Polyphenolic chemistry of tea and coffee: a century of progress. Wang Y; Ho CT J Agric Food Chem; 2009 Sep; 57(18):8109-14. PubMed ID: 19719133 [TBL] [Abstract][Full Text] [Related]
8. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Bandyopadhyay P; Ghosh AK; Ghosh C Food Funct; 2012 Jun; 3(6):592-605. PubMed ID: 22465955 [TBL] [Abstract][Full Text] [Related]
9. Polyphenolic composition of hazelnut skin. Del Rio D; Calani L; Dall'Asta M; Brighenti F J Agric Food Chem; 2011 Sep; 59(18):9935-41. PubMed ID: 21819158 [TBL] [Abstract][Full Text] [Related]
10. Coffee, colon function and colorectal cancer. Vitaglione P; Fogliano V; Pellegrini N Food Funct; 2012 Sep; 3(9):916-22. PubMed ID: 22627289 [TBL] [Abstract][Full Text] [Related]
11. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Lee HC; Jenner AM; Low CS; Lee YK Res Microbiol; 2006 Nov; 157(9):876-84. PubMed ID: 16962743 [TBL] [Abstract][Full Text] [Related]
12. Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Barroso E; Van de Wiele T; Jiménez-Girón A; Muñoz-González I; Martín-Alvarez PJ; Moreno-Arribas MV; Bartolomé B; Peláez C; Martínez-Cuesta MC; Requena T Appl Microbiol Biotechnol; 2014 Aug; 98(15):6805-15. PubMed ID: 24764016 [TBL] [Abstract][Full Text] [Related]
13. Plasma appearance and correlation between coffee and green tea metabolites in human subjects. Renouf M; Guy P; Marmet C; Longet K; Fraering AL; Moulin J; Barron D; Dionisi F; Cavin C; Steiling H; Williamson G Br J Nutr; 2010 Dec; 104(11):1635-40. PubMed ID: 20691128 [TBL] [Abstract][Full Text] [Related]
14. Review of the Role of Fluid Dairy in Delivery of Polyphenolic Compounds in the Diet: Chocolate Milk, Coffee Beverages, Matcha Green Tea, and Beyond. Bhagat AR; Delgado AM; Issaoui M; Chammem N; Fiorino M; Pellerito A; Natalello S J AOAC Int; 2019 Sep; 102(5):1365-1372. PubMed ID: 31242953 [TBL] [Abstract][Full Text] [Related]
15. Catabolism of coffee chlorogenic acids by human colonic microbiota. Ludwig IA; Paz de Peña M; Concepción C; Alan C Biofactors; 2013; 39(6):623-32. PubMed ID: 23904092 [TBL] [Abstract][Full Text] [Related]
16. Oxidative deamination of benzylamine and lysine residue in bovine serum albumin by green tea, black tea, and coffee. Akagawa M; Shigemitsu T; Suyama K J Agric Food Chem; 2005 Oct; 53(20):8019-24. PubMed ID: 16190665 [TBL] [Abstract][Full Text] [Related]
17. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. Mena P; Ludwig IA; Tomatis VB; Acharjee A; Calani L; Rosi A; Brighenti F; Ray S; Griffin JL; Bluck LJ; Del Rio D Eur J Nutr; 2019 Jun; 58(4):1529-1543. PubMed ID: 29616322 [TBL] [Abstract][Full Text] [Related]
18. Children of Nature: Thoughts on Targeted and Untargeted Analytical Approaches to Decipher Polyphenol Reactivity in Food Processing and Metabolism. Kuhnert N J Agric Food Chem; 2024 Aug; 72(32):17695-17705. PubMed ID: 39101581 [TBL] [Abstract][Full Text] [Related]
19. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota. Barroso E; Sánchez-Patán F; Martín-Alvarez PJ; Bartolomé B; Moreno-Arribas MV; Peláez C; Requena T; van de Wiele T; Martínez-Cuesta MC J Agric Food Chem; 2013 Oct; 61(42):10163-72. PubMed ID: 24073689 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Del Rio D; Stalmach A; Calani L; Crozier A Nutrients; 2010 Aug; 2(8):820-33. PubMed ID: 22254058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]