BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22955562)

  • 21. Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats.
    Zhao YF; Zeng DL; Xia LG; Zhang SM; Xu LY; Jiang XQ; Zhang FQ
    Int J Mol Med; 2013 Mar; 31(3):614-20. PubMed ID: 23292283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenic potential of human calcitonin gene-related peptide alpha gene-modified bone marrow mesenchymal stem cells.
    Wang YS; Wang YH; Zhao GQ; Li YB
    Chin Med J (Engl); 2011 Dec; 124(23):3976-81. PubMed ID: 22340327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone formation: The nuclear matrix reloaded.
    Ellies DL; Krumlauf R
    Cell; 2006 Jun; 125(5):840-2. PubMed ID: 16751095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression during induced differentiation of sheep bone marrow mesenchymal stem cells into osteoblasts.
    Hu Y; Tang XX; He HY
    Genet Mol Res; 2013 Dec; 12(4):6527-34. PubMed ID: 24390999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus.
    Kaur G; Valarmathi MT; Potts JD; Wang Q
    Biomaterials; 2008 Oct; 29(30):4074-81. PubMed ID: 18649940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells.
    Bae SE; Bhang SH; Kim BS; Park K
    Biomacromolecules; 2012 Sep; 13(9):2811-20. PubMed ID: 22813212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of SATB2 in skeletogenesis and human disease.
    Zhao X; Qu Z; Tickner J; Xu J; Dai K; Zhang X
    Cytokine Growth Factor Rev; 2014 Feb; 25(1):35-44. PubMed ID: 24411565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MiR-1301 promotes adipogenic and osteogenic differentiation of BMSCs by targeting Satb2.
    Kong J; Wan LP; Liu ZM; Gao ST
    Eur Rev Med Pharmacol Sci; 2020 Apr; 24(7):3501-3508. PubMed ID: 32329823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells.
    Kim BS; Kim HJ; Kim JS; You YO; Zadeh H; Shin HI; Lee SJ; Park YJ; Takata T; Pi SH; Lee J; You HK
    Bone; 2012 Sep; 51(3):506-14. PubMed ID: 22634173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation.
    Choi YA; Lim J; Kim KM; Acharya B; Cho JY; Bae YC; Shin HI; Kim SY; Park EK
    J Proteome Res; 2010 Jun; 9(6):2946-56. PubMed ID: 20359165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells.
    Lloyd B; Tee BC; Headley C; Emam H; Mallery S; Sun Z
    Arch Oral Biol; 2017 May; 77():1-11. PubMed ID: 28135571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia.
    Sha Y; Lv Y; Xu Z; Yang L; Hao X; Afandi R
    Life Sci; 2017 Nov; 189():52-62. PubMed ID: 28927682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading.
    Hamrick MW; Shi X; Zhang W; Pennington C; Thakore H; Haque M; Kang B; Isales CM; Fulzele S; Wenger KH
    Bone; 2007 Jun; 40(6):1544-53. PubMed ID: 17383950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenic markers are reduced in bone-marrow mesenchymal cells and femoral bone of young spontaneously hypertensive rats.
    Landim de Barros T; Brito VG; do Amaral CC; Chaves-Neto AH; Campanelli AP; Oliveira SH
    Life Sci; 2016 Feb; 146():174-83. PubMed ID: 26796509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of boron on osteogenic differentiation of human bone marrow stromal cells.
    Ying X; Cheng S; Wang W; Lin Z; Chen Q; Zhang W; Kou D; Shen Y; Cheng X; Rompis FA; Peng L; Zhu Lu C
    Biol Trace Elem Res; 2011 Dec; 144(1-3):306-15. PubMed ID: 21625915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.
    Morsczeck C
    Calcif Tissue Int; 2006 Feb; 78(2):98-102. PubMed ID: 16467978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells.
    Sharp LA; Lee YW; Goldstein AS
    Ann Biomed Eng; 2009 Mar; 37(3):445-53. PubMed ID: 19130228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells.
    Kim IS; Jeong SJ; Kim SH; Jung JH; Park YG; Kim SH
    Biochem Biophys Res Commun; 2012 Jan; 417(2):697-703. PubMed ID: 22166200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.