These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22955796)

  • 1. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.
    Rapoport E; Montana D; Beach GS
    Lab Chip; 2012 Nov; 12(21):4433-40. PubMed ID: 22955796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture for Directed Transport of Superparamagnetic Microbeads in a Magnetic Domain Wall Routing Network.
    Rapoport E; Beach GSD
    Sci Rep; 2017 Aug; 7(1):10139. PubMed ID: 28860460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads.
    Moser Y; Lehnert T; Gijs MA
    Lab Chip; 2009 Nov; 9(22):3261-7. PubMed ID: 19865734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated microfluidic platform for magnetic microbeads separation and confinement.
    Ramadan Q; Samper V; Poenar DP; Yu C
    Biosens Bioelectron; 2006 Mar; 21(9):1693-702. PubMed ID: 16203127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic resettability for a microfluidic particulate-based arraying system.
    Sochol RD; Dueck ME; Li S; Lee LP; Lin L
    Lab Chip; 2012 Dec; 12(23):5051-6. PubMed ID: 23042508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.
    Hervás M; López MA; Escarpa A
    Analyst; 2011 May; 136(10):2131-8. PubMed ID: 21394379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers.
    Estes MD; Do J; Ahn CH
    Biomed Microdevices; 2009 Apr; 11(2):509-15. PubMed ID: 19082734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields.
    Petousis I; Homburg E; Derks R; Dietzel A
    Lab Chip; 2007 Dec; 7(12):1746-51. PubMed ID: 18030396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity.
    Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B
    Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors.
    Chen X; Shojaei-Zadeh S; Gilchrist ML; Maldarelli C
    Lab Chip; 2013 Aug; 13(15):3041-60. PubMed ID: 23748734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.
    Zhang H; Liu L; Li CW; Fu H; Chen Y; Yang M
    Biosens Bioelectron; 2011 Nov; 29(1):89-96. PubMed ID: 21872460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting.
    Sun X; Feng Z; Zhi S; Lei C; Zhang D; Zhou Y
    Sci Rep; 2017 Oct; 7(1):12967. PubMed ID: 29021533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spintronic platforms for biomedical applications.
    Freitas PP; Cardoso FA; Martins VC; Martins SA; Loureiro J; Amaral J; Chaves RC; Cardoso S; Fonseca LP; Sebastião AM; Pannetier-Lecoeur M; Fermon C
    Lab Chip; 2012 Feb; 12(3):546-57. PubMed ID: 22146898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to design magneto-based total analysis systems for biomedical applications.
    Weddemann A; Albon C; Auge A; Wittbracht F; Hedwig P; Akemeier D; Rott K; Meissner D; Jutzi P; Hütten A
    Biosens Bioelectron; 2010 Dec; 26(4):1152-63. PubMed ID: 20638263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.
    Sahore V; Fritsch I
    Anal Chem; 2014 Oct; 86(19):9405-11. PubMed ID: 25171501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.