BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

981 related articles for article (PubMed ID: 22955990)

  • 21. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1.
    Ye Z; Chen Z; Sunkel B; Frietze S; Huang TH; Wang Q; Jin VX
    Nucleic Acids Res; 2016 Sep; 44(16):7540-54. PubMed ID: 27458208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements.
    Kundaje A; Kyriazopoulou-Panagiotopoulou S; Libbrecht M; Smith CL; Raha D; Winters EE; Johnson SM; Snyder M; Batzoglou S; Sidow A
    Genome Res; 2012 Sep; 22(9):1735-47. PubMed ID: 22955985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the impact of single nucleotide variants on transcription factor binding.
    Shi W; Fornes O; Mathelier A; Wasserman WW
    Nucleic Acids Res; 2016 Dec; 44(21):10106-10116. PubMed ID: 27492288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain.
    Handel AE; Gallone G; Zameel Cader M; Ponting CP
    Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.
    Winter DR; Song L; Mukherjee S; Furey TS; Crawford GE
    Genome Res; 2013 Jul; 23(7):1118-29. PubMed ID: 23657885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factorbook: an updated catalog of transcription factor motifs and candidate regulatory motif sites.
    Pratt HE; Andrews GR; Phalke N; Purcaro MJ; van der Velde A; Moore JE; Weng Z
    Nucleic Acids Res; 2022 Jan; 50(D1):D141-D149. PubMed ID: 34755879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq.
    Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S
    DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.