BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22956106)

  • 1. Mathematical modeling of gene regulatory networks in Xenopus development.
    Saka Y
    Methods Mol Biol; 2012; 917():497-513. PubMed ID: 22956106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis.
    Langlois VS; Martyniuk CJ
    Mech Dev; 2013; 130(4-5):304-22. PubMed ID: 23295496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bistability in a model of mesoderm and anterior mesendoderm specification in Xenopus laevis.
    Middleton AM; King JR; Loose M
    J Theor Biol; 2009 Sep; 260(1):41-55. PubMed ID: 19490918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus.
    Saka Y; Smith JC
    BMC Dev Biol; 2007 May; 7():47. PubMed ID: 17506890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential induction of regulatory genes during mesoderm formation in Xenopus laevis embryos.
    Tadano T; Otani H; Taira M; Dawid IB
    Dev Genet; 1993; 14(3):204-11. PubMed ID: 8395366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activin-induced factors maintain goosecoid transcription through a paired homeodomain binding site.
    McKendry R; Harland RM; Stachel SE
    Dev Biol; 1998 Dec; 204(1):172-86. PubMed ID: 9851851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates.
    Faucheux C; Naye F; Tréguer K; Fédou S; Thiébaud P; Théze N
    Int J Dev Biol; 2010; 54(8-9):1375-82. PubMed ID: 20712000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis.
    Yamada A; Koyanagi KO; Watanabe H
    Gene; 2012 Jan; 491(2):232-6. PubMed ID: 21963995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ingeneue: a software tool to simulate and explore genetic regulatory networks.
    Kim KJ
    Methods Mol Biol; 2009; 500():169-200. PubMed ID: 19399429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling gene regulation networks using ordinary differential equations.
    Cao J; Qi X; Zhao H
    Methods Mol Biol; 2012; 802():185-97. PubMed ID: 22130881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory interactions during embryogenesis in Xenopus laevis.
    Dawid IB; Otani H; Curtiss P; Taira M
    C R Acad Sci III; 1993 Sep; 316(9):945-58. PubMed ID: 7915634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns.
    Zheng Z; Christley S; Chiu WT; Blitz IL; Xie X; Cho KW; Nie Q
    BMC Syst Biol; 2014 Jan; 8():3. PubMed ID: 24397936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ODE-Based Modeling of Complex Regulatory Circuits.
    Seaton DD
    Methods Mol Biol; 2017; 1629():317-330. PubMed ID: 28623594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cell differentiation and morphogenesis in amphibian development.
    Fukui A; Asashima M
    Int J Dev Biol; 1994 Jun; 38(2):257-66. PubMed ID: 7981034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the chromatin domain structure in arrayed repeat regions: organization of the somatic 5S RNA domain during embryogenesis in Xenopus laevis.
    Hair A; Vassetzky Y
    J Cell Biochem; 2007 Dec; 102(5):1140-8. PubMed ID: 17577215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing different ODE modelling approaches for gene regulatory networks.
    Polynikis A; Hogan SJ; di Bernardo M
    J Theor Biol; 2009 Dec; 261(4):511-30. PubMed ID: 19665034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.