These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22956331)

  • 1. Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks.
    Stocco A; Lebiere C; O'Reilly RC; Anderson JR
    Cogn Affect Behav Neurosci; 2012 Dec; 12(4):611-28. PubMed ID: 22956331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly and use of new task rules in fronto-parietal cortex.
    Dumontheil I; Thompson R; Duncan J
    J Cogn Neurosci; 2011 Jan; 23(1):168-82. PubMed ID: 20146600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing the rules: distinct and overlapping frontoparietal representations of task rules for perceptual decisions.
    Zhang J; Kriegeskorte N; Carlin JD; Rowe JB
    J Neurosci; 2013 Jul; 33(29):11852-62. PubMed ID: 23864675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles and cultural modulations of the medial prefrontal and parietal activity associated with causal attribution.
    Han S; Mao L; Qin J; Friederici AD; Ge J
    Neuropsychologia; 2011 Jan; 49(1):83-91. PubMed ID: 21075129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices.
    Huettel SA; Song AW; McCarthy G
    J Neurosci; 2005 Mar; 25(13):3304-11. PubMed ID: 15800185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontoparietal representations of task context support the flexible control of goal-directed cognition.
    Waskom ML; Kumaran D; Gordon AM; Rissman J; Wagner AD
    J Neurosci; 2014 Aug; 34(32):10743-55. PubMed ID: 25100605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
    Krasnow B; Tamm L; Greicius MD; Yang TT; Glover GH; Reiss AL; Menon V
    Neuroimage; 2003 Apr; 18(4):813-26. PubMed ID: 12725758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.
    Filimon F; Rieth CA; Sereno MI; Cottrell GW
    Cereb Cortex; 2015 Sep; 25(9):3144-58. PubMed ID: 24862848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain-independent neural underpinning of task-switching: an fMRI investigation.
    Vallesi A; Arbula S; Capizzi M; Causin F; D'Avella D
    Cortex; 2015 Apr; 65():173-83. PubMed ID: 25734897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.
    Jarbo K; Verstynen TD
    J Neurosci; 2015 Mar; 35(9):3865-78. PubMed ID: 25740516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the neural basis of cognitive control: An event-related fMRI study of task selection processes.
    Abou-Ghazaleh A; Khateb A; Kroll JF
    Int J Psychophysiol; 2020 Jul; 153():80-90. PubMed ID: 32360750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An information-processing model of three cortical regions: evidence in episodic memory retrieval.
    Sohn MH; Goode A; Stenger VA; Jung KJ; Carter CS; Anderson JR
    Neuroimage; 2005 Mar; 25(1):21-33. PubMed ID: 15734340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A central circuit of the mind.
    Anderson JR; Fincham JM; Qin Y; Stocco A
    Trends Cogn Sci; 2008 Apr; 12(4):136-43. PubMed ID: 18329948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating when and what information in the left parietal lobe allows language rule generalization.
    Orpella J; Ripollés P; Ruzzoli M; Amengual JL; Callejas A; Martinez-Alvarez A; Soto-Faraco S; de Diego-Balaguer R
    PLoS Biol; 2020 Nov; 18(11):e3000895. PubMed ID: 33137084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory retrieval: contributions of the left prefrontal cortex, the left posterior parietal cortex, and the hippocampus.
    Oztekin I; McElree B; Staresina BP; Davachi L
    J Cogn Neurosci; 2009 Mar; 21(3):581-93. PubMed ID: 18471055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of medial prefrontal and inferior parietal cortices when thinking about past, present, and future selves.
    D'Argembeau A; Stawarczyk D; Majerus S; Collette F; Van der Linden M; Salmon E
    Soc Neurosci; 2010; 5(2):187-200. PubMed ID: 19787547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.