BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22956523)

  • 21. Separating and recovering Pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation.
    Zhan L; Xu Z
    Environ Sci Technol; 2011 Jun; 45(12):5359-65. PubMed ID: 21595432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the ASR and ASR thermal residues characterization of full scale treatment plant.
    Mancini G; Viotti P; Luciano A; Fino D
    Waste Manag; 2014 Feb; 34(2):448-57. PubMed ID: 24290536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled combustion tests and bottom ash analysis using household waste with varying composition.
    Hu Y; Bakker M; Brem G; Chen G
    Waste Manag; 2011 Feb; 31(2):259-66. PubMed ID: 20675114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.
    Fujita T; Ono H; Dodbiba G; Yamaguchi K
    Waste Manag; 2014 Jul; 34(7):1264-73. PubMed ID: 24703485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.
    Palmieri R; Bonifazi G; Serranti S
    Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.
    Yang X; Sun L; Xiang J; Hu S; Su S
    Waste Manag; 2013 Feb; 33(2):462-73. PubMed ID: 22951495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of pneumatic jigging in the recovery of metallic fraction from shredded printed wiring boards.
    Wang Z; Hall P; Miles NJ; Wu T; Lambert P; Gu F
    Waste Manag Res; 2015 Sep; 33(9):785-93. PubMed ID: 26070501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes.
    Quan C; Li A; Gao N
    Waste Manag; 2009 Aug; 29(8):2353-60. PubMed ID: 19398318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The stripping effect of using high voltage electrical pulses breakage for waste printed circuit boards.
    Duan C; Han J; Zhao S; Gao Z; Qiao J; Yan G
    Waste Manag; 2018 Jul; 77():603-610. PubMed ID: 29891416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs).
    Bachér J; Mrotzek A; Wahlström M
    Waste Manag; 2015 Nov; 45():235-45. PubMed ID: 26139137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced flotation efficiency of metal from waste printed circuit boards modified by alkaline immersion.
    Dai G; Han J; Duan C; Tang L; Peng Y; Chen Y; Jiang H; Zhu Z
    Waste Manag; 2021 Feb; 120():795-804. PubMed ID: 33234472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model for simulating the grinding and classification cyclic system of waste PCBs recycling production line.
    Yang D; Xu Z
    J Hazard Mater; 2011 Sep; 192(3):1450-7. PubMed ID: 21764511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triboelectric separation technology for removing inorganics from non-metallic fraction of waste printed circuit boards: Influence of size fraction and process optimization.
    Zhang G; Wang H; He Y; Yang X; Peng Z; Zhang T; Wang S
    Waste Manag; 2017 Feb; 60():42-49. PubMed ID: 27530083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.
    Zhang G; He Y; Wang H; Zhang T; Wang S; Yang X; Xia W
    Waste Manag; 2017 Jun; 64():228-235. PubMed ID: 28343744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-destructive characterization of mechanically processed waste printed circuit boards - particle liberation analysis.
    Otsuki A; Mensbruge L; King A; Serranti S; Fiore L; Bonifazi G
    Waste Manag; 2020 Feb; 102():510-519. PubMed ID: 31760196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partitioning characteristics and particle size distributions of heavy metals in the O2/RFG waste incineration system.
    Chen JC; Huang JS
    J Hazard Mater; 2009 Dec; 172(2-3):826-32. PubMed ID: 19679392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.
    Lin KH; Chiang HL
    J Hazard Mater; 2014 Apr; 271():258-65. PubMed ID: 24637450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.
    Huang K; Li J; Xu Z
    Waste Manag; 2011 Jun; 31(6):1292-9. PubMed ID: 21295459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
    Awasthi AK; Zlamparet GI; Zeng X; Li J
    Waste Manag Res; 2017 Apr; 35(4):346-356. PubMed ID: 28097947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of non-metallic parts of waste printed circuit boards on the properties of plasticised polyvinyl chloride recycled from the waste wire.
    Das RK; Gohatre OK; Biswal M; Mohanty S; Nayak SK
    Waste Manag Res; 2019 Jun; 37(6):569-577. PubMed ID: 30945618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.