These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 22956610)
1. Heparanase and vascular endothelial growth factor expression is increased in hypoxia-induced retinal neovascularization. Hu J; Song X; He YQ; Freeman C; Parish CR; Yuan L; Yu H; Tang S Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):6810-7. PubMed ID: 22956610 [TBL] [Abstract][Full Text] [Related]
2. Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model. Liang XJ; Yuan L; Hu J; Yu HH; Li T; Lin SF; Tang SB Mol Vis; 2012; 18():1649-57. PubMed ID: 22773903 [TBL] [Abstract][Full Text] [Related]
3. Retinal heparanase expression in streptozotocin-induced diabetic rats. Ma P; Luo Y; Zhu X; Li T; Hu J; Tang S Can J Ophthalmol; 2010 Feb; 45(1):46-51. PubMed ID: 20130710 [TBL] [Abstract][Full Text] [Related]
4. Ephrin-a4 is involved in retinal neovascularization by regulating the VEGF signaling pathway. Du W; Yu W; Huang L; Zhao M; Li X Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):1990-8. PubMed ID: 22408005 [TBL] [Abstract][Full Text] [Related]
5. Silencing of S100A4, a metastasis-associated protein, inhibits retinal neovascularization via the downregulation of BDNF in oxygen-induced ischaemic retinopathy. Cheng G; He T; Xing Y Eye (Lond); 2016 Jun; 30(6):877-87. PubMed ID: 26987588 [TBL] [Abstract][Full Text] [Related]
6. Anti-angiogenic effect of luteolin on retinal neovascularization via blockade of reactive oxygen species production. Park SW; Cho CS; Jun HO; Ryu NH; Kim JH; Yu YS; Kim JS; Kim JH Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7718-26. PubMed ID: 23099493 [TBL] [Abstract][Full Text] [Related]
7. Heparanase mediates vascular endothelial growth factor gene transcription in high-glucose human retinal microvascular endothelial cells. Hu J; Wang J; Leng X; Hu Y; Shen H; Song X Mol Vis; 2017; 23():579-587. PubMed ID: 28848320 [TBL] [Abstract][Full Text] [Related]
8. Up-regulation of VEGF by retinoic acid during hyperoxia prevents retinal neovascularization and retinopathy. Wang L; Shi P; Xu Z; Li J; Xie Y; Mitton K; Drenser K; Yan Q Invest Ophthalmol Vis Sci; 2014 May; 55(7):4276-87. PubMed ID: 24867581 [TBL] [Abstract][Full Text] [Related]
9. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade. Ristori C; Filippi L; Dal Monte M; Martini D; Cammalleri M; Fortunato P; la Marca G; Fiorini P; Bagnoli P Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):155-70. PubMed ID: 20739470 [TBL] [Abstract][Full Text] [Related]
10. The role of cytochrome P450 epoxygenases in retinal angiogenesis. Capozzi ME; McCollum GW; Penn JS Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4253-60. PubMed ID: 24917142 [TBL] [Abstract][Full Text] [Related]
11. miR-429 negatively regulates the progression of hypoxia-induced retinal neovascularization by the HPSE-VEGF pathway. Xu H; Yang B; Ren Z; Wu D; Hu A; Hu J Exp Eye Res; 2022 Oct; 223():109196. PubMed ID: 35872179 [TBL] [Abstract][Full Text] [Related]
12. Effects of somatostatin analogues on retinal angiogenesis in a mouse model of oxygen-induced retinopathy: involvement of the somatostatin receptor subtype 2. Dal Monte M; Ristori C; Cammalleri M; Bagnoli P Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3596-606. PubMed ID: 19324858 [TBL] [Abstract][Full Text] [Related]
13. Captopril and vascular endothelial growth factor in a mouse model of retinopathy. Higgins RD; Yan Y; Geng Y; Sharma J; Barr SM Curr Eye Res; 2003 Aug; 27(2):123-9. PubMed ID: 14632165 [TBL] [Abstract][Full Text] [Related]
14. Upregulated Expression of Heparanase in the Vitreous of Patients With Proliferative Diabetic Retinopathy Originates From Activated Endothelial Cells and Leukocytes. Abu El-Asrar AM; Alam K; Nawaz MI; Mohammad G; Van den Eynde K; Siddiquei MM; Mousa A; De Hertogh G; Geboes K; Opdenakker G Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8239-47. PubMed ID: 26720478 [TBL] [Abstract][Full Text] [Related]
15. Suppression of retinal neovascularization by shRNA targeting HIF-1alpha. Xia XB; Xiong SQ; Xu HZ; Jiang J; Li Y Curr Eye Res; 2008 Oct; 33(10):892-902. PubMed ID: 18853324 [TBL] [Abstract][Full Text] [Related]
16. Rofecoxib inhibits retinal neovascularization via down regulation of cyclooxygenase-2 and vascular endothelial growth factor expression. Liu NN; Sun YZ; Zhao N; Chen L Clin Exp Ophthalmol; 2015 Jul; 43(5):458-65. PubMed ID: 25472856 [TBL] [Abstract][Full Text] [Related]
17. Knockout of αA-crystallin inhibits ocular neovascularization. Xu Q; Bai Y; Huang L; Zhou P; Yu W; Zhao M Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):816-26. PubMed ID: 25574047 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of hypoxia-induced retinal neovascularization in mice with short hairpin RNA targeting Rac1, possibly via blockading redox signaling. Zhang XZ; Huang X; Qiao JH; Zhang JJ; Zhang MX Exp Eye Res; 2011 Jun; 92(6):473-81. PubMed ID: 21414312 [TBL] [Abstract][Full Text] [Related]
19. Suppression of Retinal Neovascularization by Anti-CCR3 Treatment in an Oxygen-Induced Retinopathy Model in Mice. Hirahara S; Nozaki M; Ohbayashi M; Hasegawa N; Ozone D; Ogura Y Ophthalmic Res; 2017; 58(1):56-66. PubMed ID: 28376500 [TBL] [Abstract][Full Text] [Related]
20. Cysteine-rich 61, a member of the CCN family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy. You JJ; Yang CH; Chen MS; Yang CM Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3447-55. PubMed ID: 19264885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]