These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22956617)
1. Visualization of the optic fissure in short-wavelength autofluorescence images of the fundus. Duncker T; Greenberg JP; Sparrow JR; Smith RT; Quigley HA; Delori FC Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6682-6. PubMed ID: 22956617 [TBL] [Abstract][Full Text] [Related]
2. Distinct characteristics of inferonasal fundus autofluorescence patterns in stargardt disease and retinitis pigmentosa. Duncker T; Lee W; Tsang SH; Greenberg JP; Zernant J; Allikmets R; Sparrow JR Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6820-6. PubMed ID: 24071957 [TBL] [Abstract][Full Text] [Related]
3. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. Duncker T; Marsiglia M; Lee W; Zernant J; Tsang SH; Allikmets R; Greenstein VC; Sparrow JR Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8134-43. PubMed ID: 25342616 [TBL] [Abstract][Full Text] [Related]
4. Flecks in Recessive Stargardt Disease: Short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence Tomography. Sparrow JR; Marsiglia M; Allikmets R; Tsang S; Lee W; Duncker T; Zernant J Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):5029-39. PubMed ID: 26230768 [TBL] [Abstract][Full Text] [Related]
5. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT. Paavo M; Lee W; Merriam J; Bearelly S; Tsang S; Chang S; Sparrow JR Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4769-4777. PubMed ID: 28973322 [TBL] [Abstract][Full Text] [Related]
6. Patterns and Intensities of Near-Infrared and Short-Wavelength Fundus Autofluorescence in Choroideremia Probands and Carriers. Paavo M; Carvalho JRL; Lee W; Sengillo JD; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):3752-3761. PubMed ID: 31499530 [TBL] [Abstract][Full Text] [Related]
7. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease. Paavo M; Lee W; Allikmets R; Tsang S; Sparrow JR J Neurosci Res; 2019 Jan; 97(1):98-106. PubMed ID: 29701254 [TBL] [Abstract][Full Text] [Related]
8. Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence. Paavo M; Zhao J; Kim HJ; Lee W; Zernant J; Cai C; Allikmets R; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2018 May; 59(6):2459-2469. PubMed ID: 29847651 [TBL] [Abstract][Full Text] [Related]
9. Spectral-Domain Optical Coherence Tomography Is More Sensitive for Hydroxychloroquine-Related Structural Abnormalities Than Short-Wavelength and Near-Infrared Autofluorescence. Jauregui R; Parmann R; Nuzbrokh Y; Tsang SH; Sparrow JR Transl Vis Sci Technol; 2020 Aug; 9(9):8. PubMed ID: 32879764 [TBL] [Abstract][Full Text] [Related]
10. Multimodal Imaging in Best Vitelliform Macular Dystrophy. Lima de Carvalho JR; Paavo M; Chen L; Chiang J; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2019 May; 60(6):2012-2022. PubMed ID: 31070670 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared autofluorescence in young choroideremia patients. Mucciolo DP; Murro V; Giorgio D; Sodi A; Passerini I; Virgili G; Rizzo S Ophthalmic Genet; 2019 Oct; 40(5):421-427. PubMed ID: 31544579 [No Abstract] [Full Text] [Related]
12. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Duncker T; Tabacaru MR; Lee W; Tsang SH; Sparrow JR; Greenstein VC Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):585-91. PubMed ID: 23287793 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive stargardt disease. Greenstein VC; Schuman AD; Lee W; Duncker T; Zernant J; Allikmets R; Hood DC; Sparrow JR Invest Ophthalmol Vis Sci; 2015 May; 56(5):3226-34. PubMed ID: 26024107 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography. Miura M; Makita S; Azuma S; Yasuno Y; Sugiyama S; Mino T; Yamaguchi T; Agawa T; Iwasaki T; Usui Y; Rao NA; Goto H Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3352-3362. PubMed ID: 31917451 [TBL] [Abstract][Full Text] [Related]
15. Near-infrared and short-wave autofluorescence in ocular specimens. Oguchi Y; Sekiryu T; Takasumi M; Hashimoto Y; Furuta M Jpn J Ophthalmol; 2018 Sep; 62(5):605-613. PubMed ID: 30073488 [TBL] [Abstract][Full Text] [Related]
16. MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA. Schuerch K; Marsiglia M; Lee W; Tsang SH; Sparrow JR Retina; 2016 Dec; 36 Suppl 1(Suppl 1):S147-S158. PubMed ID: 28005673 [TBL] [Abstract][Full Text] [Related]
17. Multimodal imaging including semiquantitative short-wavelength and near-infrared autofluorescence in achromatopsia. Matet A; Kohl S; Baumann B; Antonio A; Mohand-Said S; Sahel JA; Audo I Sci Rep; 2018 Apr; 8(1):5665. PubMed ID: 29618791 [TBL] [Abstract][Full Text] [Related]
18. Comparisons Among Optical Coherence Tomography and Fundus Autofluorescence Modalities as Measurements of Atrophy in ABCA4-Associated Disease. Parmann R; Tsang SH; Zernant J; Allikmets R; Greenstein VC; Sparrow JR Transl Vis Sci Technol; 2022 Jan; 11(1):36. PubMed ID: 35089312 [TBL] [Abstract][Full Text] [Related]
19. Granular lesions of short-wavelength and near-infrared autofluorescence in diabetic macular oedema. Yoshitake S; Murakami T; Uji A; Fujimoto M; Dodo Y; Suzuma K; Tsujikawa A Eye (Lond); 2019 Apr; 33(4):564-571. PubMed ID: 30382240 [TBL] [Abstract][Full Text] [Related]