BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22956854)

  • 1. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape memory polymers with silicon-containing segments.
    Schoener CA; Weyand CB; Murthy R; Grunlan MA
    J Mater Chem; 2010 Mar; 20(9):1787-1793. PubMed ID: 31595106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates.
    Beltran FO; Houk CJ; Grunlan MA
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1631-1639. PubMed ID: 33667062
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Roberts CT; Beck SK; Prejean CM; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2024 Apr; 12(15):3694-3702. PubMed ID: 38529581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.
    Nail LN; Zhang D; Reinhard JL; Grunlan MA
    J Vis Exp; 2015 Oct; (105):e52981. PubMed ID: 26556112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally and Photothermally Triggered Cytocompatible Triple-Shape-Memory Polymer Based on a Graphene Oxide-Containing Poly(ε-caprolactone) and Acrylate Composite.
    Chen J; Sun S; Macios MM; Oguntade E; Narkar AR; Mather PT; Henderson JH
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):50962-72. PubMed ID: 37902447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol.
    Boyle AJ; Weems AC; Hasan SM; Nash LD; Monroe MBB; Maitland DJ
    Smart Mater Struct; 2016; 25():. PubMed ID: 30034120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory polymer composites (SMPCs) using interconnected nanowire network foams as reinforcements.
    Chen Y; Kazerooni NA; Srinivasa A; Chapkin WA; Sihn S; Roy AK; Vaddiraju S
    Nanotechnology; 2022 Nov; 34(5):. PubMed ID: 36301680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications.
    Huang K; Yang MS; Tang YJ; Ling SY; Pan F; Liu XD; Chen J
    J Biomater Appl; 2021 Feb; 35(7):823-837. PubMed ID: 32842853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape memory polymer foams with tunable interconnectivity using off-the-shelf foaming components.
    Petryk NM; Haas G; Vakil AU; Monroe MBB
    J Biomed Mater Res A; 2022 Aug; 110(8):1422-1434. PubMed ID: 35319810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of porous poly(L-lactic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Aug; 21(15):1595-605. PubMed ID: 10885732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of triple shape memory composite foams.
    Nejad HB; Baker RM; Mather PT
    Soft Matter; 2014 Oct; 10(40):8066-74. PubMed ID: 25170743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications.
    Singhal P; Small W; Cosgriff-Hernandez E; Maitland DJ; Wilson TS
    Acta Biomater; 2014 Jan; 10(1):67-76. PubMed ID: 24090987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.