These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22956902)

  • 1. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.
    Wang G; Smith SJ
    PLoS Comput Biol; 2012; 8(8):e1002671. PubMed ID: 22956902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational resolution in single molecule localization - impact of noise level and emitter density.
    Hockmann M; Kunis S; Kurre R
    Biol Chem; 2023 Apr; 404(5):427-431. PubMed ID: 36774651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method.
    Eom J; Moon S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirror-enhanced super-resolution microscopy.
    Yang X; Xie H; Alonas E; Liu Y; Chen X; Santangelo PJ; Ren Q; Xi P; Jin D
    Light Sci Appl; 2016; 5(6):e16134-. PubMed ID: 27398242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient super-resolution volumetric imaging by radial fluctuation Bayesian analysis light-sheet microscopy.
    Chen R; Zhao Y; Li M; Wang Y; Zhang L; Fei P
    J Biophotonics; 2020 Aug; 13(8):e201960242. PubMed ID: 32314491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization.
    Roels J; Aelterman J; De Vylder J; Hiep Luong ; Saeys Y; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():443-447. PubMed ID: 28268367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging by deconvolution microscopy.
    McNally JG; Karpova T; Cooper J; Conchello JA
    Methods; 1999 Nov; 19(3):373-85. PubMed ID: 10579932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and positioning through scattering media with double-helix point spread function engineering.
    Gao J; Wang P; Li W; Zhang X; Song C; Liu Z; Han S; Liu H
    J Biomed Opt; 2023 Apr; 28(4):046008. PubMed ID: 37114201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Bayesian-based multiview deconvolution.
    Preibisch S; Amat F; Stamataki E; Sarov M; Singer RH; Myers E; Tomancak P
    Nat Methods; 2014 Jun; 11(6):645-8. PubMed ID: 24747812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin.
    Dong CY; Yu B; Kaplan PD; So PT
    Microsc Res Tech; 2004 Jan; 63(1):81-6. PubMed ID: 14677137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging.
    Chen WT; Zhu AY; Khorasaninejad M; Shi Z; Sanjeev V; Capasso F
    Nano Lett; 2017 May; 17(5):3188-3194. PubMed ID: 28388086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization?
    MacDonald L; Baldini G; Storrie B
    Methods Mol Biol; 2015; 1270():255-75. PubMed ID: 25702123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
    Zhu L; Badugu R; Zhang D; Wang R; Descrovi E; Lakowicz JR
    Anal Biochem; 2017 Aug; 531():20-36. PubMed ID: 28527910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers.
    Siegel N; Lupashin V; Storrie B; Brooker G
    Nat Photonics; 2016 Dec; 10():802-808. PubMed ID: 28261321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.