BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22956902)

  • 1. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.
    Wang G; Smith SJ
    PLoS Comput Biol; 2012; 8(8):e1002671. PubMed ID: 22956902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational resolution in single molecule localization - impact of noise level and emitter density.
    Hockmann M; Kunis S; Kurre R
    Biol Chem; 2023 Apr; 404(5):427-431. PubMed ID: 36774651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method.
    Eom J; Moon S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirror-enhanced super-resolution microscopy.
    Yang X; Xie H; Alonas E; Liu Y; Chen X; Santangelo PJ; Ren Q; Xi P; Jin D
    Light Sci Appl; 2016; 5(6):e16134-. PubMed ID: 27398242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient super-resolution volumetric imaging by radial fluctuation Bayesian analysis light-sheet microscopy.
    Chen R; Zhao Y; Li M; Wang Y; Zhang L; Fei P
    J Biophotonics; 2020 Aug; 13(8):e201960242. PubMed ID: 32314491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization.
    Roels J; Aelterman J; De Vylder J; Hiep Luong ; Saeys Y; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():443-447. PubMed ID: 28268367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging by deconvolution microscopy.
    McNally JG; Karpova T; Cooper J; Conchello JA
    Methods; 1999 Nov; 19(3):373-85. PubMed ID: 10579932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and positioning through scattering media with double-helix point spread function engineering.
    Gao J; Wang P; Li W; Zhang X; Song C; Liu Z; Han S; Liu H
    J Biomed Opt; 2023 Apr; 28(4):046008. PubMed ID: 37114201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Bayesian-based multiview deconvolution.
    Preibisch S; Amat F; Stamataki E; Sarov M; Singer RH; Myers E; Tomancak P
    Nat Methods; 2014 Jun; 11(6):645-8. PubMed ID: 24747812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin.
    Dong CY; Yu B; Kaplan PD; So PT
    Microsc Res Tech; 2004 Jan; 63(1):81-6. PubMed ID: 14677137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging.
    Chen WT; Zhu AY; Khorasaninejad M; Shi Z; Sanjeev V; Capasso F
    Nano Lett; 2017 May; 17(5):3188-3194. PubMed ID: 28388086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization?
    MacDonald L; Baldini G; Storrie B
    Methods Mol Biol; 2015; 1270():255-75. PubMed ID: 25702123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy.
    Park H; Na M; Kim B; Park S; Kim KH; Chang S; Ye JC
    Nat Commun; 2022 Jun; 13(1):3297. PubMed ID: 35676288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
    Zhu L; Badugu R; Zhang D; Wang R; Descrovi E; Lakowicz JR
    Anal Biochem; 2017 Aug; 531():20-36. PubMed ID: 28527910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.