These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22956959)

  • 41. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.
    Nakamura T; Lipton SA
    Cell Death Differ; 2007 Jul; 14(7):1305-14. PubMed ID: 17431424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease.
    Dyer RR; Ford KI; Robinson RAS
    Methods Enzymol; 2019; 626():499-538. PubMed ID: 31606089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration.
    Uehara T; Nakamura T; Yao D; Shi ZQ; Gu Z; Ma Y; Masliah E; Nomura Y; Lipton SA
    Nature; 2006 May; 441(7092):513-7. PubMed ID: 16724068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight.
    Bhat AH; Dar KB; Anees S; Zargar MA; Masood A; Sofi MA; Ganie SA
    Biomed Pharmacother; 2015 Aug; 74():101-10. PubMed ID: 26349970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrosative stress-induced S-glutathionylation of protein disulfide isomerase.
    Uys JD; Xiong Y; Townsend DM
    Methods Enzymol; 2011; 490():321-32. PubMed ID: 21266258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.
    Calabrese V; Boyd-Kimball D; Scapagnini G; Butterfield DA
    In Vivo; 2004; 18(3):245-67. PubMed ID: 15341181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Free radicals: properties, sources, targets, and their implication in various diseases.
    Phaniendra A; Jestadi DB; Periyasamy L
    Indian J Clin Biochem; 2015 Jan; 30(1):11-26. PubMed ID: 25646037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antioxidants, oxidative stress, and degenerative neurological disorders.
    Floyd RA
    Proc Soc Exp Biol Med; 1999 Dec; 222(3):236-45. PubMed ID: 10601882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.
    Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S
    Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson's disease.
    Sircar E; Rai SR; Wilson MA; Schlossmacher MG; Sengupta R
    Arch Biochem Biophys; 2021 Jun; 704():108869. PubMed ID: 33819447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation.
    Shahani N; Sawa A
    Antioxid Redox Signal; 2011 Apr; 14(8):1493-504. PubMed ID: 20812870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The compensatory antioxidant response system with a focus on neuroprogressive disorders.
    Morris G; Puri BK; Walker AJ; Berk M; Walder K; Bortolasci CC; Marx W; Carvalho AF; Maes M
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Dec; 95():109708. PubMed ID: 31351160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation.
    Chatterji A; Sengupta R
    Int J Biochem Cell Biol; 2021 Feb; 131():105904. PubMed ID: 33359085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. S-Nitrosylation Regulates Cell Survival and Death in the Central Nervous System.
    Koriyama Y; Furukawa A
    Neurochem Res; 2018 Jan; 43(1):50-58. PubMed ID: 28523529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Reactive oxygen and nitrogen species].
    Ługowski M; Saczko J; Kulbacka J; Banaś T
    Pol Merkur Lekarski; 2011 Nov; 31(185):313-7. PubMed ID: 22299536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of cardiovascular cellular processes by S-nitrosylation.
    Schulman IH; Hare JM
    Biochim Biophys Acta; 2012 Jun; 1820(6):752-62. PubMed ID: 21536106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease.
    Spiers JG; Chen HC; Bourgognon JM; Steinert JR
    Free Radic Biol Med; 2019 Apr; 134():468-483. PubMed ID: 30716433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.