BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22956994)

  • 1. A novel approach for transcription factor analysis using SELEX with high-throughput sequencing (TFAST).
    Reiss DJ; Howard FM; Mobley HL
    PLoS One; 2012; 7(8):e42761. PubMed ID: 22956994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Better estimation of protein-DNA interaction parameters improve prediction of functional sites.
    Nagaraj VH; O'Flanagan RA; Sengupta AM
    BMC Biotechnol; 2008 Dec; 8():94. PubMed ID: 19105805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR.
    An SQ; Valvano MA; Yu YH; Webb JS; Lopez Campos G
    BMC Microbiol; 2020 Jan; 20(1):1. PubMed ID: 31896348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FSBC: fast string-based clustering for HT-SELEX data.
    Kato S; Ono T; Minagawa H; Horii K; Shiratori I; Waga I; Ito K; Aoki T
    BMC Bioinformatics; 2020 Jun; 21(1):263. PubMed ID: 32580745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data.
    Caroli J; Taccioli C; De La Fuente A; Serafini P; Bicciato S
    Bioinformatics; 2016 Jan; 32(2):161-4. PubMed ID: 26395772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeF-seq: A Simple Procedure for Base Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Ishikawa S; Oshima T
    Methods Mol Biol; 2018; 1837():33-47. PubMed ID: 30109604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery.
    Hoinka J; Berezhnoy A; Dao P; Sauna ZE; Gilboa E; Przytycka TM
    Nucleic Acids Res; 2015 Jul; 43(12):5699-707. PubMed ID: 25870409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data.
    Kähärä J; Lähdesmäki H
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S2. PubMed ID: 24267147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved SELEX-Seq strategy for characterizing DNA-binding specificity of transcription factor: NF-κB as an example.
    Gu G; Wang T; Yang Y; Xu X; Wang J
    PLoS One; 2013; 8(10):e76109. PubMed ID: 24130762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes.
    Riley TR; Slattery M; Abe N; Rastogi C; Liu D; Mann RS; Bussemaker HJ
    Methods Mol Biol; 2014; 1196():255-78. PubMed ID: 25151169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust Analytical Pipeline for Genome-Wide Identification of the Genes Regulated by a Transcription Factor: Combinatorial Analysis Performed Using gSELEX-Seq and RNA-Seq.
    Kojima T; Kunitake E; Ihara K; Kobayashi T; Nakano H
    PLoS One; 2016; 11(7):e0159011. PubMed ID: 27411092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.
    Nitta KR; Vincentelli R; Jacox E; Cimino A; Ohtsuka Y; Sobral D; Satou Y; Cambillau C; Lemaire P
    Methods Mol Biol; 2019; 2025():487-517. PubMed ID: 31267468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct ChIP-Seq significance analysis improves target prediction.
    Bansal M; Mendiratta G; Anand S; Kushwaha R; Kim R; Kustagi M; Iyer A; Chaganti RS; Califano A; Sumazin P
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S4. PubMed ID: 26040656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.