BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 22957614)

  • 1. Calculation of strain images of a breast-mimicking phantom from 3D CT image data.
    Kim JG; Aowlad Hossain AB; Shin JH; Lee SY
    Med Phys; 2012 Sep; 39(9):5469-78. PubMed ID: 22957614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray strain tensor imaging: FEM simulation and experiments with a micro-CT.
    Kim JG; Park SE; Lee SY
    J Xray Sci Technol; 2014; 22(1):63-75. PubMed ID: 24463386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain measurement from 3D micro-CT images of a breast-mimicking phantom.
    Lee SY; Kim GW; Han BH; Cho MH
    Comput Biol Med; 2011 Mar; 41(3):123-30. PubMed ID: 21276968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel breast software phantom for biomechanical modeling of elastography.
    Bhatti SN; Sridhar-Keralapura M
    Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of tomosynthesis elastography in a breast-mimicking phantom.
    Engelken FJ; Sack I; Klatt D; Fischer T; Fallenberg EM; Bick U; Diekmann F
    Eur J Radiol; 2012 Sep; 81(9):2169-73. PubMed ID: 21724357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation.
    Wang Y; Helminen E; Jiang J
    Med Phys; 2015 Sep; 42(9):5453-66. PubMed ID: 26328994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coupled subsample displacement estimation method for ultrasound-based strain elastography.
    Jiang J; Hall TJ
    Phys Med Biol; 2015 Nov; 60(21):8347-64. PubMed ID: 26458219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
    Kheirkhah N; Dempsey S; Sadeghi-Naini A; Samani A
    Med Phys; 2023 Apr; 50(4):2176-2194. PubMed ID: 36398744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated 3D ultrasound elastography of the breast: a phantom validation study.
    Hendriks GA; Holländer B; Menssen J; Milkowski A; Hansen HH; de Korte CL
    Phys Med Biol; 2016 Apr; 61(7):2665-79. PubMed ID: 26976196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray elastography: a feasibility study.
    Kim GW; Han BH; Cho MH; Lee SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3513-6. PubMed ID: 19964803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
    Wang Y; Nasief HG; Kohn S; Milkowski A; Clary T; Barnes S; Barbone PE; Hall TJ
    Ultrason Imaging; 2017 Nov; 39(6):369-392. PubMed ID: 28585511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-cost quasi-real-time elastography using B-mode ultrasound images.
    Kwon HJ; Lee J
    Biomed Mater Eng; 2014; 24(4):1673-92. PubMed ID: 24948452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a deformable lung phantom with 3D-printed flexible airways.
    Shin DS; Kang SH; Kim KH; Kim TH; Kim DS; Chung JB; Lucero SA; Suh TS; Yamamoto T
    Med Phys; 2020 Mar; 47(3):898-908. PubMed ID: 31863479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three dimensional strain volume reconstructions using SOUPR and wobbler based acquisitions: A phantom study.
    Yang W; Ingle A; Varghese T
    Med Phys; 2016 Apr; 43(4):1615. PubMed ID: 27036561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
    Freed M; Badal A; Jennings RJ; de las Heras H; Myers KJ; Badano A
    Phys Med Biol; 2011 Jun; 56(12):3513-33. PubMed ID: 21606556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions.
    Deprez JF; Brusseau E; Schmitt C; Cloutier G; Basset O
    Med Image Anal; 2009 Feb; 13(1):116-27. PubMed ID: 18823814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal.
    Slimi T; Moussa IM; Kraiem T; Mahjoubi H
    Biomed Eng Online; 2017 Jan; 16(1):19. PubMed ID: 28095866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.