BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22957739)

  • 1. Time-resolved, confocal single-molecule tracking of individual organic dyes and fluorescent proteins in three dimensions.
    Han JJ; Kiss C; Bradbury AR; Werner JH
    ACS Nano; 2012 Oct; 6(10):8922-32. PubMed ID: 22957739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule fluorescence imaging in living cells.
    Xia T; Li N; Fang X
    Annu Rev Phys Chem; 2013; 64():459-80. PubMed ID: 23331306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D in in vivo 2-photon laser scanning fluorescence microscopy with sample motion in 6 degrees of freedom.
    Scheibe S; Dorostkar MM; Seebacher C; Uhl R; Lison F; Herms J
    J Neurosci Methods; 2011 Aug; 200(1):47-53. PubMed ID: 21723323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parsing the motion of single molecules: a novel algorithm for deconvoluting the dynamics of individual receptors at the cell surface.
    Ghosh I; Wirth MJ
    Sci STKE; 2007 May; 2007(388):pe28. PubMed ID: 17536098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying anisotropic solute transport in protein crystals using 3-D laser scanning confocal microscopy visualization.
    Cvetkovic A; Straathof AJ; Hanlon DN; van der Zwaag S; Krishna R; van der Wielen LA
    Biotechnol Bioeng; 2004 May; 86(4):389-98. PubMed ID: 15112291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolution for a 3D world.
    Shaevitz JW
    Nat Methods; 2008 Jun; 5(6):471-2. PubMed ID: 18511914
    [No Abstract]   [Full Text] [Related]  

  • 7. A starter kit for point-localization super-resolution imaging.
    Manley S; Gunzenhäuser J; Olivier N
    Curr Opin Chem Biol; 2011 Dec; 15(6):813-21. PubMed ID: 22119536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy.
    Baumann G; Gryczynski I; Földes-Papp Z
    Opt Express; 2010 Aug; 18(17):17883-96. PubMed ID: 20721175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional tracking of carbon nanotubes within living cells.
    Reuel NF; Dupont A; Thouvenin O; Lamb DC; Strano MS
    ACS Nano; 2012 Jun; 6(6):5420-8. PubMed ID: 22624495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light exposure and cell viability in fluorescence microscopy.
    Schneckenburger H; Weber P; Wagner M; Schickinger S; Richter V; Bruns T; Strauss WS; Wittig R
    J Microsc; 2012 Mar; 245(3):311-8. PubMed ID: 22126439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing fluorescence excitation and detection for intravital two-photon microscopy.
    Suan D; Hampton HR; Tomura M; Kanagawa O; Chtanova T; Phan TG
    Methods Cell Biol; 2013; 113():311-23. PubMed ID: 23317908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHG nanoprobes: advancing harmonic imaging in biology.
    Dempsey WP; Fraser SE; Pantazis P
    Bioessays; 2012 May; 34(5):351-60. PubMed ID: 22392481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Reconstruction for free-space 360 degrees fluorescence molecular tomography and the effects of animal motion.
    Lasser T; Soubret A; Ripoll J; Ntziachristos V
    IEEE Trans Med Imaging; 2008 Feb; 27(2):188-94. PubMed ID: 18334440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope.
    Germann JA; Davis LM
    Opt Express; 2014 Mar; 22(5):5641-50. PubMed ID: 24663905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic real-time three-dimensional cell tracking by fluorescence microscopy.
    Rabut G; Ellenberg J
    J Microsc; 2004 Nov; 216(Pt 2):131-7. PubMed ID: 15516224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule diffusivity and mobility.
    Wang Q; Moerner WE
    ACS Nano; 2011 Jul; 5(7):5792-9. PubMed ID: 21612271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule imaging of BMP4 dimerization on human periodontal ligament cells.
    Mi HW; Lee MC; Chiang YC; Chow LP; Lin CP
    J Dent Res; 2011 Nov; 90(11):1318-24. PubMed ID: 21841042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional motion measurements using feature tracking.
    Kuo J; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):800-10. PubMed ID: 18467224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing individual molecules with confocal fluorescence microscopy.
    Nie S; Chiu DT; Zare RN
    Science; 1994 Nov; 266(5187):1018-21. PubMed ID: 7973650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.