BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22957874)

  • 21. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus.
    Hendry TA; Dunlap PV
    Mol Phylogenet Evol; 2011 Dec; 61(3):834-43. PubMed ID: 21864694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi.
    Ast JC; Dunlap PV
    Arch Microbiol; 2004 May; 181(5):352-61. PubMed ID: 15034641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs.
    Dunlap PV
    Arch Microbiol; 1985 Feb; 141(1):44-50. PubMed ID: 3994483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of aposymbiotic and symbiotic aphids on parasitoid progeny development and adult oviposition behavior within aphid instars.
    Cheng RX; Meng L; Li BP
    Environ Entomol; 2010 Apr; 39(2):389-95. PubMed ID: 20388267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of luminous bacterial symbionts in the light organs of myctophid and stomiiform fishes.
    Foran D
    J Exp Zool; 1991 Jul; 259(1):1-8. PubMed ID: 2072087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breeding and rearing of the two striped cardinalfish, Apogon quadrifasciatus (Cuvier, 1828) in captive condition.
    Saravanan R; Vijayanand P; Vagelli AA; Murugan A; Shanker S; Rajagopal S; Balasubramanian T
    Anim Reprod Sci; 2013 Mar; 137(3-4):237-44. PubMed ID: 23434056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and luminescence of luminous bacteria promoted by agents of microbial origin.
    Rodicheva EK; Trubachev IN; Medvedeva SE; Egorova OI; Shitova LYu
    J Biolumin Chemilumin; 1993; 8(6):293-9. PubMed ID: 8285107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between luminous fish and symbiosis. I. Comparative studies of lipopolysaccharides isolated from symbiotic luminous bacteria of the luminous marine fish, Physiculus japonicus.
    Kuwae T; Andoh M; Fukasawa S; Kurata M
    Microbiol Immunol; 1983; 27(10):847-59. PubMed ID: 6669075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Symbiosis in Paramecium Bursaria.
    Karakashian MW
    Symp Soc Exp Biol; 1975; (29):145-73. PubMed ID: 785659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virulence of Photobacterium damselae subsp. piscicida in cultured cobia Rachycentron canadum.
    Liu PC; Lin JY; Lee KK
    J Basic Microbiol; 2003; 43(6):499-507. PubMed ID: 14625900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism.
    Dunn SR; Weis VM
    Environ Microbiol; 2009 Jan; 11(1):268-76. PubMed ID: 19125818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis.
    Sycuro LK; Ruby EG; McFall-Ngai M
    J Morphol; 2006 May; 267(5):555-68. PubMed ID: 16429442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae).
    Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P
    J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidoptera).
    Ehlers RU; Wulff A; Peters A
    J Invertebr Pathol; 1997 May; 69(3):212-7. PubMed ID: 9170346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth and transmission of gut bacteria in the Western flower thrips, Frankliniella occidentalis.
    de Vries EJ; Jacobs G; Breeuwer JA
    J Invertebr Pathol; 2001 Feb; 77(2):129-37. PubMed ID: 11273693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.
    Salze G; Craig SR; Smith BH; Smith EP; McLean E
    J Fish Biol; 2011 May; 78(5):1470-91. PubMed ID: 21539554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioluminescence intensity difference observed in luminous bacteria groups with different motility.
    Sasaki S; Okamoto T; Fujii T
    Lett Appl Microbiol; 2009 Mar; 48(3):313-7. PubMed ID: 19207857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of symbiotic algae on sea anemone metabolism: analysis by in vivo 31P nuclear magnetic resonance spectroscopy.
    Steen GR
    J Exp Zool; 1986 Dec; 240(3):315-25. PubMed ID: 2878964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ontogenic and ecological control of metamorphosis onset in a carapid fish, Carapus homei: experimental evidence from vertebra and otolith comparisons.
    Parmentier E; Lecchini D; Lagardere F; Vandewalle P
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):617-28. PubMed ID: 15286941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between luminous fish and symbiosis. II. Chemical composition of lipopolysaccharides isolated from symbiotic luminous bacteria in the luminous marine fish, Physiculus japonicus.
    Kuwae T; Andoh M; Kurata M
    Microbiol Immunol; 1986; 30(1):75-80. PubMed ID: 3702775
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.