BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22958123)

  • 1. Submonomer synthesis of a hybrid peptoid-azapeptoid library.
    Sarma BK; Kodadek T
    ACS Comb Sci; 2012 Oct; 14(10):558-64. PubMed ID: 22958123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of selective covalent inhibitors of platelet activating factor acetylhydrolase 1B2 from the screening of an oxadiazolone-capped peptoid-azapeptoid hybrid library.
    Sarma BK; Liu X; Kodadek T
    Bioorg Med Chem; 2016 Sep; 24(17):3953-3963. PubMed ID: 27160052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acyl hydrazides as peptoid sub-monomers.
    Sarma BK; Yousufuddin M; Kodadek T
    Chem Commun (Camb); 2011 Oct; 47(38):10590-2. PubMed ID: 21892506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.
    Tran H; Gael SL; Connolly MD; Zuckermann RN
    J Vis Exp; 2011 Nov; (57):e3373. PubMed ID: 22083233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of heterocycles into the backbone of peptoids to generate diverse peptoid-inspired one bead one compound libraries.
    Aditya A; Kodadek T
    ACS Comb Sci; 2012 Mar; 14(3):164-9. PubMed ID: 22320121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Bead Peptoid Dimerization Induced by Incorporation of Glycosylated Bridging Units in Submonomer Solid-Phase Approach to Glycopeptoids.
    Comegna D; Del Gatto A; Saviano M; Zaccaro L
    Org Lett; 2019 Jun; 21(12):4454-4458. PubMed ID: 31150252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated Submonomer Solid-Phase Synthesis of Peptoids Incorporating Multiple Substituted N-Aryl Glycine Monomers.
    Proulx C; Yoo S; Connolly MD; Zuckermann RN
    J Org Chem; 2015 Nov; 80(21):10490-7. PubMed ID: 26280152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality.
    Fowler SA; Luechapanichkul R; Blackwell HE
    J Org Chem; 2009 Feb; 74(4):1440-9. PubMed ID: 19159244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile solid-phase parallel synthesis of linear and cyclic peptoids for comparative studies of biological activity.
    Park S; Kwon YU
    ACS Comb Sci; 2015 Mar; 17(3):196-201. PubMed ID: 25602927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of a potential diagnostic biomarker for HIV infection from a random library of non-biological synthetic peptoid oligomers.
    Gearhart TL; Montelaro RC; Schurdak ME; Pilcher CD; Rinaldo CR; Kodadek T; Park Y; Islam K; Yurko R; Marques ET; Burke DS
    J Immunol Methods; 2016 Aug; 435():85-9. PubMed ID: 27182050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconstrained peptoid tetramer exhibits a predominant conformation in aqueous solution.
    Roe LT; Pelton JG; Edison JR; Butterfoss GL; Tresca BW; LaFaye BA; Whitelam S; Wemmer DE; Zuckermann RN
    Biopolymers; 2019 Jun; 110(6):e23267. PubMed ID: 30835821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel peptoid building blocks: synthesis of functionalized aromatic helix-inducing submonomers.
    Seo J; Barron AE; Zuckermann RN
    Org Lett; 2010 Feb; 12(3):492-5. PubMed ID: 20055478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encoded combinatorial libraries for the construction of cyclic peptoid microarrays.
    Kwon YU; Kodadek T
    Chem Commun (Camb); 2008 Nov; (44):5704-6. PubMed ID: 19009054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smallest peptoids with antiproliferative activity on human neoplastic cells.
    Mas-Moruno C; Cruz LJ; Mora P; Francesch A; Messeguer A; Pérez-Paya E; Albericio F
    J Med Chem; 2007 May; 50(10):2443-9. PubMed ID: 17432841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of chemoselective functionalities into peptoids via solid-phase submonomer synthesis.
    Horn T; Lee BC; Dill KA; Zuckermann RN
    Bioconjug Chem; 2004; 15(2):428-35. PubMed ID: 15025542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient modular approach for the assembly of s-linked glycopeptoids.
    Comegna D; De Riccardis F
    Org Lett; 2009 Sep; 11(17):3898-901. PubMed ID: 19655735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of N-Substituted N-Arylsulfonylglycines and Their Use in Peptoid Synthesis.
    Jobin S; Vézina-Dawod S; Herby C; Derson A; Biron E
    Org Lett; 2015 Nov; 17(22):5626-9. PubMed ID: 26550851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple strategy for the construction of combinatorial cyclic peptoid libraries.
    Lee JH; Meyer AM; Lim HS
    Chem Commun (Camb); 2010 Dec; 46(45):8615-7. PubMed ID: 20890503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable peptoid microspheres: effects of side chain chemistry and sequence.
    Hebert ML; Shah DS; Blake P; Turner JP; Servoss SL
    Org Biomol Chem; 2013 Jul; 11(27):4459-64. PubMed ID: 23715089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and screening of bead-displayed combinatorial libraries.
    Doran TM; Dickson P; Ndungu JM; Ge P; Suponitsky-Kroyter I; An H; Kodadek T
    Methods Enzymol; 2019; 622():91-127. PubMed ID: 31155067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.