These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22958138)
1. Impact of multiple joint impairments on the energetics and mechanics of walking in patients with haemophilia. Lobet S; Detrembleur C; Hermans C Haemophilia; 2013 Mar; 19(2):e66-72. PubMed ID: 22958138 [TBL] [Abstract][Full Text] [Related]
2. Impact of ankle osteoarthritis on the energetics and mechanics of gait: the case of hemophilic arthropathy. Lobet S; Hermans C; Bastien GJ; Massaad F; Detrembleur C Clin Biomech (Bristol); 2012 Jul; 27(6):625-31. PubMed ID: 22381586 [TBL] [Abstract][Full Text] [Related]
3. Functional impact of custom-made foot orthoses in patients with haemophilic ankle arthropathy. Lobet S; Detrembleur C; Lantin AC; Haenecour L; Hermans C Haemophilia; 2012 May; 18(3):e227-35. PubMed ID: 22176541 [TBL] [Abstract][Full Text] [Related]
4. Natural progression of blood-induced joint damage in patients with haemophilia: clinical relevance and reproducibility of three-dimensional gait analysis. Lobet S; Detrembleur C; Francq B; Hermans C Haemophilia; 2010 Sep; 16(5):813-21. PubMed ID: 20398067 [TBL] [Abstract][Full Text] [Related]
5. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267 [TBL] [Abstract][Full Text] [Related]
6. The biomechanical behaviour of ankle and foot joints during walking with shoes in patients with haemophilia. Eerdekens M; Peerlinck K; Staes F; Hermans C; Lobet S; Deschamps K Haemophilia; 2020 Jul; 26(4):726-734. PubMed ID: 32364326 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional gait analysis can shed new light on walking in patients with haemophilia. Lobet S; Detrembleur C; Massaad F; Hermans C ScientificWorldJournal; 2013; 2013():284358. PubMed ID: 23766686 [TBL] [Abstract][Full Text] [Related]
8. Blood-induced cartilage damage alters the ankle joint load during walking. Eerdekens M; Peerlinck K; Staes F; Pialat JB; Hermans C; Lobet S; Scheys L; Deschamps K J Orthop Res; 2020 Nov; 38(11):2419-2428. PubMed ID: 32401397 [TBL] [Abstract][Full Text] [Related]
9. Mechanics and energetics of level walking with powered ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674 [TBL] [Abstract][Full Text] [Related]
10. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657 [TBL] [Abstract][Full Text] [Related]
11. Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Detrembleur C; Vanmarsenille JM; De Cuyper F; Dierick F Gait Posture; 2005 Apr; 21(3):333-40. PubMed ID: 15760750 [TBL] [Abstract][Full Text] [Related]
12. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Mian OS; Thom JM; Ardigò LP; Narici MV; Minetti AE Acta Physiol (Oxf); 2006 Feb; 186(2):127-39. PubMed ID: 16497190 [TBL] [Abstract][Full Text] [Related]
13. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514 [TBL] [Abstract][Full Text] [Related]
14. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking. Lewek MD; Osborn AJ; Wutzke CJ Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391 [TBL] [Abstract][Full Text] [Related]
15. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate. Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751 [TBL] [Abstract][Full Text] [Related]
16. Mechanics and energetics of incline walking with robotic ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208 [TBL] [Abstract][Full Text] [Related]
17. Balance dysfunction in adults with haemophilia. Fearn M; Hill K; Williams S; Mudge L; Walsh C; McCarthy P; Walsh M; Street A Haemophilia; 2010 Jul; 16(4):606-14. PubMed ID: 20331756 [TBL] [Abstract][Full Text] [Related]
18. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
19. Haemophilia & Exercise Project (HEP): subjective and objective physical performance in adult haemophilia patients--results of a cross-sectional study. Czepa D; Von Mackensen S; Hilberg T Haemophilia; 2012 Jan; 18(1):80-5. PubMed ID: 21752158 [TBL] [Abstract][Full Text] [Related]
20. Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy. van den Hecke A; Malghem C; Renders A; Detrembleur C; Palumbo S; Lejeune TM J Pediatr Orthop; 2007 Sep; 27(6):643-7. PubMed ID: 17717464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]