These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22958284)

  • 1. Age-related prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome.
    Dridi B; Henry M; Richet H; Raoult D; Drancourt M
    APMIS; 2012 Oct; 120(10):773-7. PubMed ID: 22958284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol.
    Dridi B; Henry M; El Khéchine A; Raoult D; Drancourt M
    PLoS One; 2009 Sep; 4(9):e7063. PubMed ID: 19759898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaea as emerging organisms in complex human microbiomes.
    Dridi B; Raoult D; Drancourt M
    Anaerobe; 2011 Apr; 17(2):56-63. PubMed ID: 21420503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory tools for detection of archaea in humans.
    Dridi B
    Clin Microbiol Infect; 2012 Sep; 18(9):825-33. PubMed ID: 22897827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene.
    Mihajlovski A; Alric M; Brugère JF
    Res Microbiol; 2008; 159(7-8):516-21. PubMed ID: 18644435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal microbiota population in piglet feces shifts in response to weaning: Methanobrevibacter smithii is replaced with Methanobrevibacter boviskoreani.
    Federici S; Miragoli F; Pisacane V; Rebecchi A; Morelli L; Callegari ML
    FEMS Microbiol Lett; 2015 May; 362(10):. PubMed ID: 25903267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular diversity of methanogens in fecal samples from captive Sumatran orangutans (Pongo abelii).
    Facey HV; Northwood KS; Wright AD
    Am J Primatol; 2012 May; 74(5):408-13. PubMed ID: 22511523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the human faecal archaea in a southern Indian population.
    Rani SB; Balamurugan R; Ramakrishna BS
    J Biosci; 2017 Mar; 42(1):113-119. PubMed ID: 28229970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw.
    Kong Y; Xia Y; Seviour R; Forster R; McAllister TA
    FEMS Microbiol Ecol; 2013 May; 84(2):302-15. PubMed ID: 23278338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tungsten-enhanced growth of Methanosphaera stadtmanae.
    Dridi B; Khelaifia S; Fardeau ML; Ollivier B; Drancourt M
    BMC Res Notes; 2012 May; 5():238. PubMed ID: 22587398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea.
    Dridi B; Fardeau ML; Ollivier B; Raoult D; Drancourt M
    J Antimicrob Chemother; 2011 Sep; 66(9):2038-44. PubMed ID: 21680581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals.
    Lin C; Miller TL
    Arch Microbiol; 1998 May; 169(5):397-403. PubMed ID: 9560420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases.
    Ghavami SB; Rostami E; Sephay AA; Shahrokh S; Balaii H; Aghdaei HA; Zali MR
    Microb Pathog; 2018 Apr; 117():285-289. PubMed ID: 29477743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases.
    Blais Lecours P; Marsolais D; Cormier Y; Berberi M; Haché C; Bourdages R; Duchaine C
    PLoS One; 2014; 9(2):e87734. PubMed ID: 24498365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type.
    Carberry CA; Waters SM; Kenny DA; Creevey CJ
    Appl Environ Microbiol; 2014 Jan; 80(2):586-94. PubMed ID: 24212580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular profiling and identification of methanogenic archaeal species from rabbit caecum.
    Kušar D; Avguštin G
    FEMS Microbiol Ecol; 2010 Dec; 74(3):623-30. PubMed ID: 20950344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype.
    Vianna ME; Conrads G; Gomes BP; Horz HP
    Oral Microbiol Immunol; 2009 Oct; 24(5):417-22. PubMed ID: 19702957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach.
    Grine G; Boualam MA; Drancourt M
    Eur J Clin Microbiol Infect Dis; 2017 Dec; 36(12):2449-2455. PubMed ID: 28823095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis.
    Yu Z; García-González R; Schanbacher FL; Morrison M
    Appl Environ Microbiol; 2008 Feb; 74(3):889-93. PubMed ID: 18083874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and community composition of methanogenic archaea in the rumen of Scottish upland sheep assessed by different methods.
    Snelling TJ; Genç B; McKain N; Watson M; Waters SM; Creevey CJ; Wallace RJ
    PLoS One; 2014; 9(9):e106491. PubMed ID: 25250654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.