These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. Ho YH; Lin YT; Wu CW; Chao YM; Chang AY; Chan JY J Biomed Sci; 2015 Jun; 22(1):46. PubMed ID: 26100815 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Chan SH; Wu CA; Wu KL; Ho YH; Chang AY; Chan JY Circ Res; 2009 Oct; 105(9):886-96. PubMed ID: 19762685 [TBL] [Abstract][Full Text] [Related]
6. Disparate Roles of Oxidative Stress in Rostral Ventrolateral Medulla in Age-Dependent Susceptibility to Hypertension Induced by Systemic l-NAME Treatment in Rats. Chao YM; Rauchová H; Chan JYH Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140333 [TBL] [Abstract][Full Text] [Related]
7. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Chan SH; Wu KL; Chang AY; Tai MH; Chan JY Hypertension; 2009 Feb; 53(2):217-27. PubMed ID: 19114648 [TBL] [Abstract][Full Text] [Related]
8. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. Zhang S; Hu L; Jiang J; Li H; Wu Q; Ooi K; Wang J; Feng Y; Zhu D; Xia C J Neuroinflammation; 2020 Jan; 17(1):15. PubMed ID: 31924219 [TBL] [Abstract][Full Text] [Related]
9. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome. Wu KL; Chao YM; Tsay SJ; Chen CH; Chan SH; Dovinova I; Chan JY Hypertension; 2014 Oct; 64(4):815-24. PubMed ID: 24958506 [TBL] [Abstract][Full Text] [Related]
10. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Li HB; Qin DN; Ma L; Miao YW; Zhang DM; Lu Y; Song XA; Zhu GQ; Kang YM Toxicol Appl Pharmacol; 2014 Sep; 279(2):141-9. PubMed ID: 24937322 [TBL] [Abstract][Full Text] [Related]
11. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Chao YM; Lai MD; Chan JY Hypertension; 2013 Jun; 61(6):1270-80. PubMed ID: 23608659 [TBL] [Abstract][Full Text] [Related]
12. Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Tai MH; Wang LL; Wu KL; Chan JY Free Radic Biol Med; 2005 Feb; 38(4):450-62. PubMed ID: 15649647 [TBL] [Abstract][Full Text] [Related]
13. Effect of oxidative stress in rostral ventrolateral medulla on sympathetic hyperactivity after traumatic brain injury. Chen J; Chen W; Han K; Qi E; Chen R; Yu M; Hou L; Lv L Eur J Neurosci; 2019 Jul; 50(2):1972-1980. PubMed ID: 30762917 [TBL] [Abstract][Full Text] [Related]
14. Minocycline alters expression of inflammatory markers in autonomic brain areas and ventilatory responses induced by acute hypoxia. Silva TM; Chaar LJ; Silva RC; Takakura AC; Câmara NO; Antunes VR; Moreira TS Exp Physiol; 2018 Jun; 103(6):884-895. PubMed ID: 29528526 [TBL] [Abstract][Full Text] [Related]
15. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. Fu MH; Chen IC; Lee CH; Wu CW; Lee YC; Kung YC; Hung CY; Wu KLH J Neuroinflammation; 2019 Nov; 16(1):224. PubMed ID: 31729994 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Kimura Y; Hirooka Y; Sagara Y; Ito K; Kishi T; Shimokawa H; Takeshita A; Sunagawa K Circ Res; 2005 Feb; 96(2):252-60. PubMed ID: 15591232 [TBL] [Abstract][Full Text] [Related]
17. Effects of high fructose intake on the development of hypertension in the spontaneously hypertensive rats: the role of AT Wu KL; Wu CW; Tain YL; Chao YM; Hung CY; Tsai PC; Wang WS; Shih CD J Nutr Biochem; 2017 Mar; 41():73-83. PubMed ID: 28063367 [TBL] [Abstract][Full Text] [Related]
18. Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Chan SH; Wu KL; Kung PS; Chan JY Hypertension; 2010 Jun; 55(6):1444-53. PubMed ID: 20404217 [TBL] [Abstract][Full Text] [Related]
19. The phosphoinositide-3 kinase signaling is involved in neuroinflammation in hypertensive rats. Tan X; Jiao PL; Wang YK; Wu ZT; Zeng XR; Li ML; Wang WZ CNS Neurosci Ther; 2017 Apr; 23(4):350-359. PubMed ID: 28191736 [TBL] [Abstract][Full Text] [Related]
20. Microglia-derived TNF-α contributes to RVLM neuronal mitochondrial dysfunction via blocking the AMPK-Sirt3 pathway in stress-induced hypertension. Wang L; Liu T; Wang X; Tong L; Chen G; Zhou S; Zhang H; Liu H; Lu W; Wang G; Zhang S; Du D J Neuroinflammation; 2023 Jun; 20(1):137. PubMed ID: 37264405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]