These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22958513)
1. A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120. Ma Q; Hua HH; Chen Y; Liu BB; Krämer AL; Scheer H; Zhao KH; Zhou M FEBS J; 2012 Nov; 279(21):4095-108. PubMed ID: 22958513 [TBL] [Abstract][Full Text] [Related]
2. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
3. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. Chen Y; Zhang J; Luo J; Tu JM; Zeng XL; Xie J; Zhou M; Zhao JQ; Scheer H; Zhao KH FEBS J; 2012 Jan; 279(1):40-54. PubMed ID: 22008418 [TBL] [Abstract][Full Text] [Related]
4. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
5. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli. Yoshihara S; Shimada T; Matsuoka D; Zikihara K; Kohchi T; Tokutomi S Biochemistry; 2006 Mar; 45(11):3775-84. PubMed ID: 16533061 [TBL] [Abstract][Full Text] [Related]
7. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Biochemistry; 2012 May; 51(17):3576-85. PubMed ID: 22494320 [TBL] [Abstract][Full Text] [Related]
9. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
10. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
11. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. Sato T; Kikukawa T; Miyoshi R; Kajimoto K; Yonekawa C; Fujisawa T; Unno M; Eki T; Hirose Y J Biol Chem; 2019 Dec; 294(49):18909-18922. PubMed ID: 31649035 [TBL] [Abstract][Full Text] [Related]
12. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
13. Chemical inhomogeneity in the ultrafast dynamics of the DXCF cyanobacteriochrome Tlr0924. Freer LH; Kim PW; Corley SC; Rockwell NC; Zhao L; Thibert AJ; Lagarias JC; Larsen DS J Phys Chem B; 2012 Sep; 116(35):10571-81. PubMed ID: 22721495 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics. Kim PW; Freer LH; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2012 Jan; 51(2):608-18. PubMed ID: 22148715 [TBL] [Abstract][Full Text] [Related]
15. Red/green cyanobacteriochromes: sensors of color and power. Rockwell NC; Martin SS; Lagarias JC Biochemistry; 2012 Dec; 51(48):9667-77. PubMed ID: 23151047 [TBL] [Abstract][Full Text] [Related]
16. There and Back Again: Loss and Reacquisition of Two-Cys Photocycles in Cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol; 2017 May; 93(3):741-754. PubMed ID: 28055111 [TBL] [Abstract][Full Text] [Related]
17. Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Ishizuka T; Shimada T; Okajima K; Yoshihara S; Ochiai Y; Katayama M; Ikeuchi M Plant Cell Physiol; 2006 Sep; 47(9):1251-61. PubMed ID: 16887842 [TBL] [Abstract][Full Text] [Related]
18. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
19. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Fushimi K; Narikawa R Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683 [TBL] [Abstract][Full Text] [Related]
20. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Mandalari C; Losi A; Gärtner W Photochem Photobiol Sci; 2013 Jul; 12(7):1144-57. PubMed ID: 23467500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]