These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22959184)
1. Multi-arm histidine copolymer for controlled release of insulin from poly(lactide-co-glycolide) microsphere. Park W; Kim D; Kang HC; Bae YH; Na K Biomaterials; 2012 Dec; 33(34):8848-57. PubMed ID: 22959184 [TBL] [Abstract][Full Text] [Related]
2. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. Sun S; Liang N; Piao H; Yamamoto H; Kawashima Y; Cui F J Microencapsul; 2010; 27(6):471-8. PubMed ID: 20113168 [TBL] [Abstract][Full Text] [Related]
3. Preparation of ONO-1301-loaded poly(lactide-co-glycolide) microspheres and their effect on nerve conduction velocity. Hazekawa M; Sakai Y; Yoshida M; Haraguchi T; Morisaki T; Uchida T J Pharm Pharmacol; 2011 Mar; 63(3):362-8. PubMed ID: 21749383 [TBL] [Abstract][Full Text] [Related]
4. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres. Kim JH; Taluja A; Knutson K; Han Bae Y J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769 [TBL] [Abstract][Full Text] [Related]
5. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. Ungaro F; d'Emmanuele di Villa Bianca R; Giovino C; Miro A; Sorrentino R; Quaglia F; La Rotonda MI J Control Release; 2009 Apr; 135(1):25-34. PubMed ID: 19154761 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release. Park W; Na K Colloids Surf B Biointerfaces; 2009 Sep; 72(2):193-200. PubMed ID: 19414243 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Kwon YM; Kim SW Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317 [TBL] [Abstract][Full Text] [Related]
8. Effect of PLGA hydrophilia on the drug release and the hypoglucemic activity of different insulin-loaded PLGA microspheres. Presmanes C; de Miguel L; Espada R; Alvarez C; Morales E; Torrado JJ J Microencapsul; 2011; 28(8):791-8. PubMed ID: 21967461 [TBL] [Abstract][Full Text] [Related]
9. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related]
10. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Sheshala R; Peh KK; Darwis Y Drug Dev Ind Pharm; 2009 Nov; 35(11):1364-74. PubMed ID: 19832637 [TBL] [Abstract][Full Text] [Related]
11. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Haggag YA; Faheem AM; Tambuwala MM; Osman MA; El-Gizawy SA; O'Hagan B; Irwin N; McCarron PA Pharm Dev Technol; 2018 Apr; 23(4):370-381. PubMed ID: 28285551 [TBL] [Abstract][Full Text] [Related]
12. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Jiang G; Qiu W; DeLuca PP Pharm Res; 2003 Mar; 20(3):452-9. PubMed ID: 12669968 [TBL] [Abstract][Full Text] [Related]
13. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Jain S; Rathi VV; Jain AK; Das M; Godugu C Nanomedicine (Lond); 2012 Sep; 7(9):1311-37. PubMed ID: 22583576 [TBL] [Abstract][Full Text] [Related]
14. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Wu J; Williams GR; Branford-White C; Li H; Li Y; Zhu LM Eur J Pharm Sci; 2016 Sep; 92():28-38. PubMed ID: 27343696 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. Wang J; Li S; Chen T; Xian W; Zhang H; Wu L; Zhu W; Zeng Q J Mater Sci Mater Med; 2019 Aug; 30(8):93. PubMed ID: 31392433 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation. Su ZX; Shi YN; Teng LS; Li X; Wang LX; Meng QF; Teng LR; Li YX Pharm Dev Technol; 2011 Aug; 16(4):377-84. PubMed ID: 20370594 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization, and pharmacodynamics of exenatide-loaded poly(DL-lactic-co-glycolic acid) microspheres. Liu B; Dong Q; Wang M; Shi L; Wu Y; Yu X; Shi Y; Shan Y; Jiang C; Zhang X; Gu T; Chen Y; Kong W Chem Pharm Bull (Tokyo); 2010 Nov; 58(11):1474-9. PubMed ID: 21048339 [TBL] [Abstract][Full Text] [Related]
18. A sulfate polysaccharide/TNF-related apoptosis-inducing ligand (TRAIL) complex for the long-term delivery of TRAIL in poly(lactic-co-glycolic acid) (PLGA) microspheres. Kim H; Jeong D; Kang HE; Lee KC; Na K J Pharm Pharmacol; 2013 Jan; 65(1):11-21. PubMed ID: 23215683 [TBL] [Abstract][Full Text] [Related]
19. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells. Kavas A; Keskin D; Altunbaş K; Tezcaner A Int J Pharm; 2016 Aug; 510(1):168-83. PubMed ID: 27343363 [TBL] [Abstract][Full Text] [Related]