BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22959203)

  • 21. Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells.
    Harreither W; Felice AK; Paukner R; Gorton L; Ludwig R; Sygmund C
    Biotechnol J; 2012 Nov; 7(11):1359-66. PubMed ID: 22815189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells.
    Yakovleva ME; Gonaus C; Schropp K; ÓConghaile P; Leech D; Peterbauer CK; Gorton L
    Phys Chem Chem Phys; 2015 Apr; 17(14):9074-81. PubMed ID: 25752794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications.
    Guschin DA; Castillo J; Dimcheva N; Schuhmann W
    Anal Bioanal Chem; 2010 Oct; 398(4):1661-73. PubMed ID: 20652686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further insights into the catalytical properties of deglycosylated pyranose dehydrogenase from Agaricus meleagris recombinantly expressed in Pichia pastoris.
    Yakovleva ME; Killyéni A; Seubert O; O Conghaile P; Macaodha D; Leech D; Gonaus C; Popescu IC; Peterbauer CK; Kjellström S; Gorton L
    Anal Chem; 2013 Oct; 85(20):9852-8. PubMed ID: 24016351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A membraneless biofuel cell powered by ethanol and alcoholic beverage.
    Deng L; Shang L; Wen D; Zhai J; Dong S
    Biosens Bioelectron; 2010 Sep; 26(1):70-3. PubMed ID: 20627512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.
    Tan TC; Spadiut O; Wongnate T; Sucharitakul J; Krondorfer I; Sygmund C; Haltrich D; Chaiyen P; Peterbauer CK; Divne C
    PLoS One; 2013; 8(1):e53567. PubMed ID: 23326459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems.
    Sleutels TH; Darus L; Hamelers HV; Buisman CJ
    Bioresour Technol; 2011 Dec; 102(24):11172-6. PubMed ID: 22004593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes.
    Gonaus C; Maresch D; Schropp K; Ó Conghaile P; Leech D; Gorton L; Peterbauer CK
    Enzyme Microb Technol; 2017 Apr; 99():57-66. PubMed ID: 28193332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.
    Wang JY; Nien PC; Chen CH; Chen LC; Ho KC
    Bioresour Technol; 2012 Jul; 116():502-6. PubMed ID: 22541949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretchable biofuel cell with enzyme-modified conductive textiles.
    Ogawa Y; Takai Y; Kato Y; Kai H; Miyake T; Nishizawa M
    Biosens Bioelectron; 2015 Dec; 74():947-52. PubMed ID: 26257187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell.
    Tanne C; Göbel G; Lisdat F
    Biosens Bioelectron; 2010 Oct; 26(2):530-5. PubMed ID: 20702080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of a novel bioanode for amino acid powered fuel cells through an artificial enzyme cascade pathway.
    Satomura T; Horinaga K; Tanaka S; Takamura E; Sakamoto H; Sakuraba H; Ohshima T; Suye SI
    Biotechnol Lett; 2019 May; 41(4-5):605-611. PubMed ID: 30937578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials.
    Zafar MN; Tasca F; Boland S; Kujawa M; Patel I; Peterbauer CK; Leech D; Gorton L
    Bioelectrochemistry; 2010 Nov; 80(1):38-42. PubMed ID: 20466600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers.
    Shkil H; Schulte A; Guschin DA; Schuhmann W
    Chemphyschem; 2011 Mar; 12(4):806-13. PubMed ID: 21337486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
    Chaudhuri SK; Lovley DR
    Nat Biotechnol; 2003 Oct; 21(10):1229-32. PubMed ID: 12960964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification.
    Gao F; Courjean O; Mano N
    Biosens Bioelectron; 2009 Oct; 25(2):356-61. PubMed ID: 19679461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.
    Jia YH; Tran HT; Kim DH; Oh SJ; Park DH; Zhang RH; Ahn DH
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):315-21. PubMed ID: 17909860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.
    Zhao HY; Zhou HM; Zhang JX; Zheng W; Zheng YF
    Biosens Bioelectron; 2009 Oct; 25(2):463-8. PubMed ID: 19713096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes.
    Sarauli D; Ludwig R; Haltrich D; Gorton L; Lisdat F
    Bioelectrochemistry; 2012 Oct; 87():9-14. PubMed ID: 21849263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.