BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22959203)

  • 41. Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes.
    Moreno M; Rincon E; Pérez JM; González VM; Domingo A; Dominguez E
    Biosens Bioelectron; 2009 Dec; 25(4):778-83. PubMed ID: 19783422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polypyrrole nanowire-based enzymatic biofuel cells.
    Kim J; Kim SI; Yoo KH
    Biosens Bioelectron; 2009 Oct; 25(2):350-5. PubMed ID: 19695861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast surface display of dehydrogenases in microbial fuel-cells.
    Gal I; Schlesinger O; Amir L; Alfonta L
    Bioelectrochemistry; 2016 Dec; 112():53-60. PubMed ID: 27459246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell.
    Prasad D; Arun S; Murugesan M; Padmanaban S; Satyanarayanan RS; Berchmans S; Yegnaraman V
    Biosens Bioelectron; 2007 May; 22(11):2604-10. PubMed ID: 17129722
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible, layered biofuel cells.
    Miyake T; Haneda K; Yoshino S; Nishizawa M
    Biosens Bioelectron; 2013 Feb; 40(1):45-9. PubMed ID: 22704841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular design of laccase cathode for direct electron transfer in a biofuel cell.
    Martinez-Ortiz J; Flores R; Vazquez-Duhalt R
    Biosens Bioelectron; 2011 Jan; 26(5):2626-31. PubMed ID: 21145724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes.
    Lee JY; Shin HY; Kang SW; Park C; Kim SW
    Biosens Bioelectron; 2011 Jan; 26(5):2685-8. PubMed ID: 20696563
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of a chitosan/glucose oxidase-poly(anilineboronic acid)-Au(nano)/Au-plated Au electrode for biosensor and biofuel cell.
    Huang Y; Qin X; Li Z; Fu Y; Qin C; Wu F; Su Z; Ma M; Xie Q; Yao S; Hu J
    Biosens Bioelectron; 2012 Jan; 31(1):357-62. PubMed ID: 22099959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases.
    Zhu Z; Sun F; Zhang X; Zhang YH
    Biosens Bioelectron; 2012; 36(1):110-5. PubMed ID: 22521942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes.
    Stoica L; Dimcheva N; Haltrich D; Ruzgas T; Gorton L
    Biosens Bioelectron; 2005 Apr; 20(10):2010-8. PubMed ID: 15741070
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode.
    Bejankiwar RS; Basu A; Cementi M
    J Environ Sci (China); 2004; 16(5):851-5. PubMed ID: 15559827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulations give insight into D-glucose dioxidation at C2 and C3 by Agaricus meleagris pyranose dehydrogenase.
    Graf MM; Bren U; Haltrich D; Oostenbrink C
    J Comput Aided Mol Des; 2013 Apr; 27(4):295-304. PubMed ID: 23591812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection.
    Polsky R; Harper JC; Dirk SM; Arango DC; Wheeler DR; Brozik SM
    Langmuir; 2007 Jan; 23(2):364-6. PubMed ID: 17209577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.
    Zafar MN; Wang X; Sygmund C; Ludwig R; Leech D; Gorton L
    Anal Chem; 2012 Jan; 84(1):334-41. PubMed ID: 22091984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes.
    Boland S; Leech D
    Analyst; 2012 Jan; 137(1):113-7. PubMed ID: 22022699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mediator-adapted diaphorase variant for a glucose dehydrogenase-diaphorase biocatalytic system.
    Sugiyama T; Goto Y; Matsumoto R; Sakai H; Tokita Y; Hatazawa T
    Biosens Bioelectron; 2010 Oct; 26(2):452-7. PubMed ID: 20739172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A metallacarborane redox mediator for an enzyme-immobilized chitosan-modified bioanode.
    Buckner SW; Jelliss PA; Nukic A; Zalocusky ER; Schumacher J
    Bioelectrochemistry; 2010 Jun; 78(2):130-4. PubMed ID: 19800299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes.
    Kim KY; Chae KJ; Choi MJ; Ajayi FF; Jang A; Kim CW; Kim IS
    Bioresour Technol; 2011 Mar; 102(5):4144-9. PubMed ID: 21216140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.