BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22959430)

  • 21. Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts.
    Bauer C; Pock T; Sorantin E; Bischof H; Beichel R
    Med Image Anal; 2010 Apr; 14(2):172-84. PubMed ID: 20060769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of image-based method for extraction of coronary morphometry.
    Wischgoll T; Choy JS; Ritman EL; Kassab GS
    Ann Biomed Eng; 2008 Mar; 36(3):356-68. PubMed ID: 18228141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-aided detection of endobronchial valves using volumetric CT.
    Ochs RA; Abtin F; Ghurabi R; Rao A; Ahmad S; Brown M; Goldin JG
    Acad Radiol; 2009 Feb; 16(2):172-80. PubMed ID: 19124102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vessel tree reconstruction in thoracic CT scans with application to nodule detection.
    Agam G; Armato SG; Wu C
    IEEE Trans Med Imaging; 2005 Apr; 24(4):486-99. PubMed ID: 15822807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of algorithm for extraction of lung regions in CT exams.
    Melo P; Vasconcelos G; Diniz P; França C; Diniz J; Novaes M
    Stud Health Technol Inform; 2013; 192():1176. PubMed ID: 23920950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient method of automatic pulmonary parenchyma segmentation in CT images.
    Chen Z; Sun X; Nie S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5540-2. PubMed ID: 18003267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraction of samples from airway and vessel trees in 3D lung CT based on a multi-scale principal curve tracing algorithm.
    You S; Bas E; Erdogmus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5157-60. PubMed ID: 22255500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional visualization and morphometry of small airways from microfocal X-ray computed tomography.
    Sera T; Fujioka H; Yokota H; Makinouchi A; Himeno R; Schroter RC; Tanishita K
    J Biomech; 2003 Nov; 36(11):1587-94. PubMed ID: 14522199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.
    Bian Z; Tan W; Yang J; Liu J; Zhao D
    Biomed Mater Eng; 2014; 24(6):3239-49. PubMed ID: 25227033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Path planning for virtual bronchoscopy.
    Negahdar M; Ahmadian A; Navab N; Firouznia K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():156-9. PubMed ID: 17946384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tree-space statistics and approximations for large-scale analysis of anatomical trees.
    Feragen A; Owen M; Petersen J; Wille MM; Thomsen LH; Dirksen A; de Bruijne M
    Inf Process Med Imaging; 2013; 23():74-85. PubMed ID: 24683959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data.
    van Rikxoort EM; Prokop M; de Hoop B; Viergever MA; Pluim JP; van Ginneken B
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):263-71. PubMed ID: 20425996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computerized identification of airway wall in CT examinations using a 3D active surface evolution approach.
    Gu S; Fuhrman C; Meng X; Siegfried JM; Gur D; Leader JK; Sciurba FC; Pu J
    Med Image Anal; 2013 Apr; 17(3):283-96. PubMed ID: 23260997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic segmentation of pulmonary lobes robust against incomplete fissures.
    van Rikxoort EM; Prokop M; de Hoop B; Viergever MA; Pluim JP; van Ginneken B
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1286-96. PubMed ID: 20304724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmentation of airways in lungs using projections in 3-D CT angiography images.
    Babin D; Vansteenkiste E; Pizurica A; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3162-5. PubMed ID: 21096807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT.
    Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T
    Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knowledge-driven automated detection of pleural plaques and thickening in high resolution CT of the lung.
    Rudrapatna M; Mai V; Sowmya A; Wilson P
    Inf Process Med Imaging; 2005; 19():270-85. PubMed ID: 17354702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supervised probabilistic segmentation of pulmonary nodules in CT scans.
    van Ginneken B
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):912-9. PubMed ID: 17354860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional path planning for virtual bronchoscopy.
    Kiraly AP; Helferty JP; Hoffman EA; McLennan G; Higgins WE
    IEEE Trans Med Imaging; 2004 Nov; 23(11):1365-79. PubMed ID: 15554125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of pulmonary airway tree structures.
    Palágyi K; Tschirren J; Hoffman EA; Sonka M
    Comput Biol Med; 2006 Sep; 36(9):974-96. PubMed ID: 16076463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.