These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22959835)

  • 1. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.
    Eggersdorfer ML; Gröhn AJ; Sorensen CM; McMurry PH; Pratsinis SE
    J Colloid Interface Sci; 2012 Dec; 387(1):12-23. PubMed ID: 22959835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.
    Eggersdorfer ML; Kadau D; Herrmann HJ; Pratsinis SE
    J Aerosol Sci; 2012 Apr; 46():7-19. PubMed ID: 23658467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Fractal Structures by Spray Flame Synthesis Using X-ray Scattering.
    Simmler M; Meier M; Nirschl H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.
    Ku BK; Evans DE
    Aerosol Sci Technol; 2012 Apr; 46(4):473-84. PubMed ID: 26526560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies.
    Messing ME; Svensson CR; Pagels J; Meuller BO; Deppert K; Rissler J
    Nanotoxicology; 2013 Sep; 7(6):1052-63. PubMed ID: 22630037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Limitations of Aerosol Separation by a Tandem Differential Mobility Analyzer-Aerosol Particle Mass Analyzer.
    Radney JG; Zangmeister CD
    Aerosol Sci Technol; 2016; 50(2):160-172. PubMed ID: 28663667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological properties of atmospheric aerosol aggregates.
    Xiong C; Friedlander SK
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11851-6. PubMed ID: 11592995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties.
    Olszok V; Bierwirth M; Weber AP
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparticle sintering dynamics: from fractal-like aggregates to compact structures.
    Eggersdorfer ML; Kadau D; Herrmann HJ; Pratsinis SE
    Langmuir; 2011 May; 27(10):6358-67. PubMed ID: 21488641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis.
    Ku BK; Emery MS; Maynard AD; Stolzenburg MR; McMurry PH
    Nanotechnology; 2006 Jul; 17(14):3613-21. PubMed ID: 19661613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Structure of Agglomerates consisting of Polydisperse Particles.
    Eggersdorfer ML; Pratsinis SE
    Aerosol Sci Technol; 2012 Mar; 46(3):347-353. PubMed ID: 23729953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates.
    Xing Y; Koylu UO; Rosner DE
    Appl Opt; 1999 Apr; 38(12):2686-97. PubMed ID: 18319842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time shape-based particle separation and detailed in situ particle shape characterization.
    Beranek J; Imre D; Zelenyuk A
    Anal Chem; 2012 Feb; 84(3):1459-65. PubMed ID: 22220641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of coating of dicarboxylic acids on the mass-mobility relationship of soot particles.
    Xue H; Khalizov AF; Wang L; Zheng J; Zhang R
    Environ Sci Technol; 2009 Apr; 43(8):2787-92. PubMed ID: 19475951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.
    Leskinen J; Ihalainen M; Torvela T; Kortelainen M; Lamberg H; Tiitta P; Jakobi G; Grigonyte J; Joutsensaari J; Sippula O; Tissari J; Virtanen A; Zimmermann R; Jokiniemi J
    Environ Sci Technol; 2014 Nov; 48(22):13298-306. PubMed ID: 25365741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.
    di Stasio S; Konstandopoulos AG; Kostoglou M
    J Colloid Interface Sci; 2002 Mar; 247(1):33-46. PubMed ID: 16290438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles.
    Jossen R; Mueller R; Pratsinis SE; Watson M; Kamal Akhtar M
    Nanotechnology; 2005 Jul; 16(7):S609-17. PubMed ID: 21727483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.