BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 22959947)

  • 21. Effect of omitting one or two milkings weekly on lactational performance in dairy ewes.
    Hervás G; Ramella JL; López S; González JS; Mantecón AR
    J Dairy Res; 2006 May; 73(2):207-15. PubMed ID: 16476180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea.
    Park YK; Koo HC; Kim SH; Hwang SY; Jung WK; Kim JM; Shin S; Kim RT; Park YH
    J Dairy Sci; 2007 Dec; 90(12):5405-14. PubMed ID: 18024731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field validation of a milk-line sampling device for monitoring milk component data.
    Godden S; Bey R; Reneau J; Farnsworth R; LaValle M
    J Dairy Sci; 2002 Sep; 85(9):2192-6. PubMed ID: 12362451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of milking interval on milk secretion and mammary tight junction permeability in dairy ewes.
    Castillo V; Such X; Caja G; Casals R; Albanell E; Salama AA
    J Dairy Sci; 2008 Jul; 91(7):2610-9. PubMed ID: 18565920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of once versus twice daily milking throughout lactation on milk yield and milk composition in dairy goats.
    Salama AA; Such X; Caja G; Rovai M; Casals R; Albanell E; Marín MP; Martí A
    J Dairy Sci; 2003 May; 86(5):1673-80. PubMed ID: 12778578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compositional analysis of nonfat dry milk by using near infrared diffuse reflectance spectroscopy.
    Baer RJ; Frank JF; Loewenstein M
    J Assoc Off Anal Chem; 1983 Jul; 66(4):858-63. PubMed ID: 6885691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of reduction of milking frequency and supplementation of vitamin E and selenium above requirements on milk yield and composition in Assaf ewes.
    Pulido E; Giráldez FJ; Bodas R; Andrés S; Prieto N
    J Dairy Sci; 2012 Jul; 95(7):3527-35. PubMed ID: 22720911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accuracy of simplified sampling procedures for estimating milk composition in dairy ewes.
    Othmane MH; Angel Fuertes J; Gonzalo C; De La Fuente LF; Primitivo FS
    J Dairy Res; 2006 Feb; 73(1):109-14. PubMed ID: 16433969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the sampling device on fat and protein variation in cow milk samples obtained for official milk recording.
    Fouz R; Yus E; Sanjuán ML; Diéguez FJ
    J Dairy Sci; 2009 Oct; 92(10):4914-8. PubMed ID: 19762807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-wave near-infrared spectroscopy of milk powder for brand identification and component analysis.
    Wu D; Feng S; He Y
    J Dairy Sci; 2008 Mar; 91(3):939-49. PubMed ID: 18292249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in Llama (Lama glama) milk composition during lactation.
    Riek A; Gerken M
    J Dairy Sci; 2006 Sep; 89(9):3484-93. PubMed ID: 16899683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of analytical methods and the influence of milk components on milk urea nitrogen recovery.
    Peterson AB; French KR; Russek-Cohen E; Kohn RA
    J Dairy Sci; 2004 Jun; 87(6):1747-50. PubMed ID: 15453488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].
    Li XY; Wang JH; Huang YW; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):665-8. PubMed ID: 21595214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.
    Bogomolov A; Belikova V; Galyanin V; Melenteva A; Meyer H
    Talanta; 2017 May; 167():563-572. PubMed ID: 28340762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. At-line near-infrared spectroscopy for prediction of the solid fat content of milk fat from New Zealand butter.
    Meagher LP; Holroyd SE; Illingworth D; van de Ven F; Lane S
    J Agric Food Chem; 2007 Apr; 55(8):2791-6. PubMed ID: 17378579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison between red-green-blue imaging and visible-near infrared reflectance as potential process analytical tools for monitoring syneresis.
    Mateo MJ; O'Callaghan DJ; O'Donnell CP
    J Dairy Sci; 2010 May; 93(5):1882-9. PubMed ID: 20412901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longer milking intervals alter mammary epithelial permeability and the Udder's ability to extract nutrients.
    Delamaire E; Guinard-Flament J
    J Dairy Sci; 2006 Jun; 89(6):2007-16. PubMed ID: 16702264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: highlighting the predictive power of lactose and electrical conductivity.
    Ebrahimie E; Ebrahimi F; Ebrahimi M; Tomlinson S; Petrovski KR
    J Dairy Res; 2018 May; 85(2):193-200. PubMed ID: 29785910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pregnancy and extended lactation on milk production in dairy goats milked once daily.
    Salama AA; Caja G; Such X; Casals R; Albanell E
    J Dairy Sci; 2005 Nov; 88(11):3894-904. PubMed ID: 16230695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of leucocyte populations, and milk composition, in milk fractions of healthy quarters in dairy cows.
    Sarikaya H; Werner-Misof C; Atzkern M; Bruckmaier RM
    J Dairy Res; 2005 Nov; 72(4):486-92. PubMed ID: 16223466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.