BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22960185)

  • 1. The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis.
    Bittner S; Bauer MA; Ehling P; Bobak N; Breuer J; Herrmann AM; Golfels M; Wiendl H; Budde T; Meuth SG
    Exp Neurol; 2012 Dec; 238(2):149-55. PubMed ID: 22960185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system.
    Bittner S; Meuth SG; Göbel K; Melzer N; Herrmann AM; Simon OJ; Weishaupt A; Budde T; Bayliss DA; Bendszus M; Wiendl H
    Brain; 2009 Sep; 132(Pt 9):2501-16. PubMed ID: 19570851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis.
    Ge Z; Da Y; Xue Z; Zhang K; Zhuang H; Peng M; Li Y; Li W; Simard A; Hao J; Yao Z; Zhang R
    Exp Neurol; 2013 Mar; 241():56-66. PubMed ID: 23261766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation.
    Ingwersen J; Wingerath B; Graf J; Lepka K; Hofrichter M; Schröter F; Wedekind F; Bauer A; Schrader J; Hartung HP; Prozorovski T; Aktas O
    J Neuroinflammation; 2016 Feb; 13():48. PubMed ID: 26920550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Aminopyridine ameliorates mobility but not disease course in an animal model of multiple sclerosis.
    Göbel K; Wedell JH; Herrmann AM; Wachsmuth L; Pankratz S; Bittner S; Budde T; Kleinschnitz C; Faber C; Wiendl H; Meuth SG
    Exp Neurol; 2013 Oct; 248():62-71. PubMed ID: 23748135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model.
    Wiedmann F; Beyersdorf C; Zhou X; Büscher A; Kraft M; Nietfeld J; Walz TP; Unger LA; Loewe A; Schmack B; Ruhparwar A; Karck M; Thomas D; Borggrefe M; Seemann G; Katus HA; Schmidt C
    J Am Heart Assoc; 2020 May; 9(10):e015751. PubMed ID: 32390491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats.
    Castelo-Branco G; Stridh P; Guerreiro-Cacais AO; Adzemovic MZ; Falcão AM; Marta M; Berglund R; Gillett A; Hamza KH; Lassmann H; Hermanson O; Jagodic M
    Neurobiol Dis; 2014 Nov; 71():220-33. PubMed ID: 25149263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T cell and antibody responses in remitting-relapsing experimental autoimmune encephalomyelitis in (C57BL/6 x SJL) F1 mice.
    Zhang GX; Yu S; Gran B; Li J; Calida D; Ventura E; Chen X; Rostami A
    J Neuroimmunol; 2004 Mar; 148(1-2):1-10. PubMed ID: 14975581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein.
    Irony-Tur-Sinai M; Grigoriadis N; Lourbopoulos A; Pinto-Maaravi F; Abramsky O; Brenner T
    Exp Neurol; 2006 Mar; 198(1):136-44. PubMed ID: 16423348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-IL-16 therapy reduces CD4+ T-cell infiltration and improves paralysis and histopathology of relapsing EAE.
    Skundric DS; Dai R; Zakarian VL; Bessert D; Skoff RP; Cruikshank WW; Kurjakovic Z
    J Neurosci Res; 2005 Mar; 79(5):680-93. PubMed ID: 15682385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental autoimmune encephalomyelitis induced with a combination of myelin basic protein and myelin oligodendrocyte glycoprotein is ameliorated by administration of a single myelin basic protein peptide.
    Leadbetter EA; Bourque CR; Devaux B; Olson CD; Sunshine GH; Hirani S; Wallner BP; Smilek DE; Happ MP
    J Immunol; 1998 Jul; 161(1):504-12. PubMed ID: 9647262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-C chemokine receptor type 4 antagonist Compound 22 ameliorates experimental autoimmune encephalomyelitis.
    Moriguchi K; Miyamoto K; Tanaka N; Ueno R; Nakayama T; Yoshie O; Kusunoki S
    J Neuroimmunol; 2016 Feb; 291():54-8. PubMed ID: 26857495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epicutaneously induced TGF-beta-dependent tolerance inhibits experimental autoimmune encephalomyelitis.
    Szczepanik M; Tutaj M; Bryniarski K; Dittel BN
    J Neuroimmunol; 2005 Jul; 164(1-2):105-14. PubMed ID: 15899524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
    Murphy AC; Lalor SJ; Lynch MA; Mills KH
    Brain Behav Immun; 2010 May; 24(4):641-51. PubMed ID: 20138983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation.
    Oh K; Park HB; Seo MW; Byoun OJ; Lee DS
    Clin Immunol; 2012 Nov; 145(2):122-32. PubMed ID: 23001131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel protective model against experimental allergic encephalomyelitis in mice expressing a transgenic TCR-specific for myelin oligodendrocyte glycoprotein.
    Mendel I; Natarajan K; Ben-Nun A; Shevach EM
    J Neuroimmunol; 2004 Apr; 149(1-2):10-21. PubMed ID: 15020060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis.
    Oyamada A; Ikebe H; Itsumi M; Saiwai H; Okada S; Shimoda K; Iwakura Y; Nakayama KI; Iwamoto Y; Yoshikai Y; Yamada H
    J Immunol; 2009 Dec; 183(11):7539-46. PubMed ID: 19917699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selective M-CSF receptor tyrosine kinase inhibitor Ki20227 suppresses experimental autoimmune encephalomyelitis.
    Uemura Y; Ohno H; Ohzeki Y; Takanashi H; Murooka H; Kubo K; Serizawa I
    J Neuroimmunol; 2008 Mar; 195(1-2):73-80. PubMed ID: 18378004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of K2P5.1 potassium channels in multiple sclerosis.
    Bittner S; Bobak N; Herrmann AM; Göbel K; Meuth P; Höhn KG; Stenner MP; Budde T; Wiendl H; Meuth SG
    Ann Neurol; 2010 Jul; 68(1):58-69. PubMed ID: 20582984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.