These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22960303)

  • 1. The influence of poly(n-butyl acrylate) networks on viability and function of smooth muscle cells and vascular fibroblasts.
    Krüger A; Braune S; Kratz K; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2012; 52(2-4):283-94. PubMed ID: 22960303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of angiogenically stimulated intermediate CD163+ monocytes/macrophages with soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli matched to that of human arteries.
    Mayer A; Kratz K; Hiebl B; Lendlein A; Jung F
    Artif Organs; 2012 Mar; 36(3):E28-38. PubMed ID: 22360779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of different surface treatments of poly(n-butyl acrylate) networks on fibroblasts adhesion, morphology and viability.
    Krüger-Genge A; Braune S; Walter M; Krengel M; Kratz K; Küpper JH; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2018; 69(1-2):305-316. PubMed ID: 29660925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viability, morphology and function of primary endothelial cells on poly(n-butyl acrylate) networks having elastic moduli comparable to arteries.
    Hiebl B; Cui J; Kratz K; Frank O; Schossig M; Richau K; Lee S; Jung F; Lendlein A
    J Biomater Sci Polym Ed; 2012; 23(7):901-15. PubMed ID: 21457619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-angiogenic CD14(++) CD16(+) CD163(+) monocytes accelerate the in vitro endothelialization of soft hydrophobic poly (n-butyl acrylate) networks.
    Mayer A; Roch T; Kratz K; Lendlein A; Jung F
    Acta Biomater; 2012 Dec; 8(12):4253-9. PubMed ID: 22902818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemocompatibility of soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli adapted to the elasticity of human arteries.
    Braune S; Hönow A; Mrowietz C; Cui J; Kratz K; Hellwig J; Uzüm C; Klitzing RV; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2011; 49(1-4):375-90. PubMed ID: 22214708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-compatibility of soft hydrophobic poly (n-butyl acrylate) networks with elastic moduli for regeneration of functional tissues.
    Roch T; Cui J; Kratz K; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2012; 50(1-2):131-42. PubMed ID: 22538541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test system for evaluating the influence of polymer properties on primary human keratinocytes and fibroblasts in mono- and coculture.
    Trescher K; Roch T; Cui J; Kratz K; Lendlein A; Jung F
    J Biotechnol; 2013 Jun; 166(1-2):58-64. PubMed ID: 23643480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenically stimulated alternative monocytes maintain their pro-angiogenic and non-inflammatory phenotype in long-term co-cultures with HUVEC.
    Krüger A; Mayer A; Roch T; Schulz C; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2014; 58(1):229-40. PubMed ID: 25227195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.
    Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K
    Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries.
    Wang W; Xu X; Li Z; Kratz K; Ma N; Lendlein A
    Clin Hemorheol Microcirc; 2019; 71(2):277-289. PubMed ID: 30530970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human vascular smooth muscle cells and endothelial cells cocultured on polyglycolic acid (70/30) scaffold in tissue engineered vascular graft.
    Wen SJ; Zhao LM; Wang SG; Li JX; Chen HY; Liu JL; Liu Y; Luo Y; Changizi R
    Chin Med J (Engl); 2007 Aug; 120(15):1331-5. PubMed ID: 17711739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines.
    McBane JE; Cai K; Labow RS; Santerre JP
    Acta Biomater; 2012 Feb; 8(2):488-501. PubMed ID: 21971418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro].
    Wen SJ; Zhao LM; Li P; Li JX; Liu Y; Liu JL; Chen YC
    Zhonghua Yi Xue Za Zhi; 2005 Mar; 85(12):816-8. PubMed ID: 15949397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adherence and viability of primary human keratinocytes and primary human dermal fibroblasts on acrylonitrile-based copolymers with different concentrations of positively charged functional groups.
    Trescher K; Scharnagl N; Kratz K; Roch T; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2012; 52(2-4):391-401. PubMed ID: 22975949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular tissue engineering construct containing smooth muscle cells and endothelial cells.
    Leung BM; Sefton MV
    Ann Biomed Eng; 2007 Dec; 35(12):2039-49. PubMed ID: 17882548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingosine-1-phosphate-induced release of TIMP-2 from vascular smooth muscle cells inhibits angiogenesis.
    Mascall KS; Small GR; Gibson G; Nixon GF
    J Cell Sci; 2012 May; 125(Pt 9):2267-75. PubMed ID: 22344262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advance in study of vascular endothelial cell and smooth muscle cell co-culture system].
    Li Y; Yang Q; Weng X; Chen Y; Ruan C; Li D; Zhu X
    Zhongguo Zhong Yao Za Zhi; 2012 Feb; 37(3):265-8. PubMed ID: 22568220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an artificial vessel lined with human vascular cells.
    Gulbins H; Dauner M; Petzold R; Goldemund A; Anderson I; Doser M; Meiser B; Reichart B
    J Thorac Cardiovasc Surg; 2004 Sep; 128(3):372-7. PubMed ID: 15354094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.