These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22960323)

  • 1. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids.
    Vijayaraghavan M; Stolnik S; Howdle SM; Illum L
    Int J Pharm; 2012 Nov; 438(1-2):225-31. PubMed ID: 22960323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids.
    Vijayaraghavan M; Stolnik S; Howdle SM; Illum L
    Int J Pharm; 2013 Jan; 441(1-2):580-8. PubMed ID: 23178217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties.
    Perinelli DR; Cespi M; Bonacucina G; Naylor A; Whitaker M; Lam JK; Howdle SM; Casettari L; Palmieri GF
    Curr Drug Deliv; 2016; 13(5):673-81. PubMed ID: 26674199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling, melting point reduction and solubility of PEG 1500 in supercritical CO2.
    Pasquali I; Comi L; Pucciarelli F; Bettini R
    Int J Pharm; 2008 May; 356(1-2):76-81. PubMed ID: 18294790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micronization and microencapsulation of felodipine by supercritical carbon dioxide.
    Chiou AH; Cheng HC; Wang DP
    J Microencapsul; 2006 May; 23(3):265-76. PubMed ID: 16801239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid extraction of microbial phospholipid fatty acids from activated sludge.
    Hanif M; Atsuta Y; Fujie K; Daimon H
    J Chromatogr A; 2010 Oct; 1217(43):6704-8. PubMed ID: 20541766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical characterization of polyethylene glycols by thermal analytical technique and the effect of humidity and molecular weight.
    Majumdar R; Alexander KS; Riga AT
    Pharmazie; 2010 May; 65(5):343-7. PubMed ID: 20503926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ FTIR spectroscopic study of the effect of CO2 sorption on H-bonding in PEG-PVP mixtures.
    Labuschagne PW; Kazarian SG; Sadiku RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1500-6. PubMed ID: 21345719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid.
    Manosroi A; Chutoprapat R; Abe M; Manosroi J
    Int J Pharm; 2008 Mar; 352(1-2):248-55. PubMed ID: 18036754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil extraction from microalgae for biodiesel production.
    Halim R; Gladman B; Danquah MK; Webley PA
    Bioresour Technol; 2011 Jan; 102(1):178-85. PubMed ID: 20655746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the Production of Lipid Microparticles Using PGSS
    López-Iglesias C; López ER; Fernández J; Landin M; García-González CA
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous TiO(2)/SiO(2) composite prepared using PEG as template direction reagent with assistance of supercritical CO(2).
    Jiao J; Xu Q; Li L
    J Colloid Interface Sci; 2007 Dec; 316(2):596-603. PubMed ID: 17900602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.
    Lee JW; Fukusaki E; Bamba T
    Bioanalysis; 2012 Oct; 4(19):2413-22. PubMed ID: 23088467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of human growth hormone in supercritical carbon dioxide.
    Kelly CA; Howdle SM; Naylor A; Coxhill G; Tye LC; Illum L; Lewis AL
    J Pharm Sci; 2012 Jan; 101(1):56-67. PubMed ID: 21905036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prilling as manufacturing technique for multiparticulate lipid/PEG fixed-dose combinations.
    Vervaeck A; Monteyne T; Saerens L; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2014 Oct; 88(2):472-82. PubMed ID: 25010389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of structural variations on drug release from lipid/polyethylene glycol matrices.
    Windbergs M; Strachan CJ; Kleinebudde P
    Eur J Pharm Sci; 2009 Jul; 37(5):555-62. PubMed ID: 19406229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):38-43. PubMed ID: 18809481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of polymorphonuclear leukocyte locomotion by synthetic amphiphiles.
    Dahlgren C; Magnusson KE
    Scand J Infect Dis Suppl; 1980; Suppl 24():44-7. PubMed ID: 6937979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids.
    Roth M
    J Chromatogr A; 2009 Mar; 1216(10):1861-80. PubMed ID: 18952213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ethylene glycol) enhances the surface activity of a pulmonary surfactant.
    Yu LM; Lu JJ; Chiu IW; Leung KS; Chan YW; Zhang L; Policova Z; Hair ML; Neumann AW
    Colloids Surf B Biointerfaces; 2004 Aug; 36(3-4):167-76. PubMed ID: 15276633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.