These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22960758)
1. The maize cystatin CC9 interacts with apoplastic cysteine proteases. van der Linde K; Mueller AN; Hemetsberger C; Kashani F; van der Hoorn RA; Doehlemann G Plant Signal Behav; 2012 Nov; 7(11):1397-401. PubMed ID: 22960758 [TBL] [Abstract][Full Text] [Related]
2. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. van der Linde K; Hemetsberger C; Kastner C; Kaschani F; van der Hoorn RA; Kumlehn J; Doehlemann G Plant Cell; 2012 Mar; 24(3):1285-300. PubMed ID: 22454455 [TBL] [Abstract][Full Text] [Related]
3. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
4. The core effector Cce1 is required for early infection of maize by Ustilago maydis. Seitner D; Uhse S; Gallei M; Djamei A Mol Plant Pathol; 2018 Oct; 19(10):2277-2287. PubMed ID: 29745456 [TBL] [Abstract][Full Text] [Related]
5. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem. Tanaka S; Djamei A; Presti LL; Schipper K; Winterberg S; Amati S; Becker D; Büchner H; Kumlehn J; Reissmann S; Kahmann R Eur J Cell Biol; 2015; 94(7-9):349-58. PubMed ID: 26118724 [TBL] [Abstract][Full Text] [Related]
6. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. Doehlemann G; van der Linde K; Assmann D; Schwammbach D; Hof A; Mohanty A; Jackson D; Kahmann R PLoS Pathog; 2009 Feb; 5(2):e1000290. PubMed ID: 19197359 [TBL] [Abstract][Full Text] [Related]
7. TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. Cardoso TH; Freitas AC; Andrade BS; Sousa AO; Santiago Ada S; Koop DM; Gramacho KP; Alvim FC; Micheli F; Pirovani CP PLoS One; 2015; 10(12):e0144440. PubMed ID: 26641247 [TBL] [Abstract][Full Text] [Related]
8. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. van Wyk SG; Du Plessis M; Cullis CA; Kunert KJ; Vorster BJ BMC Plant Biol; 2014 Nov; 14():294. PubMed ID: 25404209 [TBL] [Abstract][Full Text] [Related]
9. An apoplastic peptide activates salicylic acid signalling in maize. Ziemann S; van der Linde K; Lahrmann U; Acar B; Kaschani F; Colby T; Kaiser M; Ding Y; Schmelz E; Huffaker A; Holton N; Zipfel C; Doehlemann G Nat Plants; 2018 Mar; 4(3):172-180. PubMed ID: 29483684 [TBL] [Abstract][Full Text] [Related]
10. A Conserved Microbial Motif 'Traps' Protease Activation in Host Immunity. Sabale M; Di Pietro A; Redkar A Trends Plant Sci; 2019 Aug; 24(8):665-667. PubMed ID: 31280986 [TBL] [Abstract][Full Text] [Related]
11. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Basse CW Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197 [TBL] [Abstract][Full Text] [Related]
12. Loop replacement design: a new way to improve potency of plant cystatins. Kunert KJ; Pillay P FEBS J; 2022 Apr; 289(7):1823-1826. PubMed ID: 34979048 [TBL] [Abstract][Full Text] [Related]
13. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
14. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. Hemetsberger C; Herrberger C; Zechmann B; Hillmer M; Doehlemann G PLoS Pathog; 2012; 8(5):e1002684. PubMed ID: 22589719 [TBL] [Abstract][Full Text] [Related]
15. Chloroplast-associated metabolic functions influence the susceptibility of maize to Ustilago maydis. Kretschmer M; Croll D; Kronstad JW Mol Plant Pathol; 2017 Dec; 18(9):1210-1221. PubMed ID: 27564650 [TBL] [Abstract][Full Text] [Related]
16. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. Ren RC; Kong LG; Zheng GM; Zhao YJ; Jiang X; Wu JW; Liu C; Chu J; Ding XH; Zhang XS; Wang GF; Zhao XY Plant Physiol; 2024 May; 195(2):1642-1659. PubMed ID: 38431524 [TBL] [Abstract][Full Text] [Related]
18. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Doehlemann G; Wahl R; Horst RJ; Voll LM; Usadel B; Poree F; Stitt M; Pons-Kühnemann J; Sonnewald U; Kahmann R; Kämper J Plant J; 2008 Oct; 56(2):181-195. PubMed ID: 18564380 [TBL] [Abstract][Full Text] [Related]
19. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Carrillo L; Martinez M; Ramessar K; Cambra I; Castañera P; Ortego F; Díaz I Plant Cell Rep; 2011 Jan; 30(1):101-12. PubMed ID: 21082183 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Martinez M; Cambra I; Carrillo L; Diaz-Mendoza M; Diaz I Plant Physiol; 2009 Nov; 151(3):1531-45. PubMed ID: 19759340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]