These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22960796)

  • 21. Metal-enhanced fluorescence from silver-SiO2-silver nanoburger structures.
    Zhang Y; Mandeng LN; Bondre N; Dragan A; Geddes CD
    Langmuir; 2010 Jul; 26(14):12371-6. PubMed ID: 20486652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip.
    Tawa K; Kondo F; Sasakawa C; Nagae K; Nakamura Y; Nozaki A; Kaya T
    Anal Chem; 2015 Apr; 87(7):3871-6. PubMed ID: 25719730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor.
    Tawa K; Umetsu M; Nakazawa H; Hattori T; Kumagai I
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8628-32. PubMed ID: 23945148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle.
    Fu Y; Zhang J; Lakowicz JR
    J Fluoresc; 2007 Nov; 17(6):811-6. PubMed ID: 17922175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.
    Zhu Y; Choe CS; Ahlberg S; Meinke MC; Alexiev U; Lademann J; Darvin ME
    J Biomed Opt; 2015 May; 20(5):051006. PubMed ID: 25394476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer.
    Hou S; Chen Y; Lu D; Xiong Q; Lim Y; Duan H
    Adv Mater; 2020 Feb; 32(8):e1906475. PubMed ID: 31943423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures.
    Chowdhury MH; Ray K; Aslan K; Lakowicz JR; Geddes CD
    J Phys Chem C Nanomater Interfaces; 2007 Dec; 111(51):18856-18863. PubMed ID: 18521191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125.
    Chakkarapani SK; Zhang P; Ahn S; Kang SH
    Biosens Bioelectron; 2016 Jul; 81():23-31. PubMed ID: 26913504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced fluorescence of curcumin on plasmonic platforms.
    Mukerjee A; Luchowski R; Ranjan AP; Raut S; Vishwanatha JK; Gryczynski Z; Gryczynski I
    Curr Pharm Biotechnol; 2010 Feb; 11(2):223-8. PubMed ID: 20210735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depolarization of surface-enhanced fluorescence: an approach to fluorescence polarization assays.
    Szmacinski H; Lakowicz JR
    Anal Chem; 2008 Aug; 80(16):6260-6. PubMed ID: 18627176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunoassays based on surface-enhanced fluorescence using gap-plasmon-tunable Ag bilayer nanoparticle films.
    Zhang R; Wang Z; Song C; Yang J; Sadaf A; Cui Y
    J Fluoresc; 2013 Jan; 23(1):71-7. PubMed ID: 22890683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal Enhanced Fluorescence on Silicon Wafer Substrates.
    Gryczynski I; Matveeva EG; Sarkar P; Bharill S; Borejdo J; Mandecki W; Akopova I; Gryczynski Z
    Chem Phys Lett; 2008 Oct; 462(4-6):327-330. PubMed ID: 19137060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular fluorescence enhancement on fractal-like structures.
    Luchowski R; Shtoyko T; Matveeva E; Sarkar P; Borejdo J; Gryczynski Z; Gryczynski I
    Appl Spectrosc; 2010 Jun; 64(6):578-83. PubMed ID: 20537224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single molecule immunoassay on plasmonic platforms.
    Luchowski R; Matveeva EG; Shtoyko T; Sarkar P; Patsenker LD; Klochko OP; Terpetschnig EA; Borejdo J; Akopova I; Gryczynski Z; Gryczynski I
    Curr Pharm Biotechnol; 2010 Jan; 11(1):96-102. PubMed ID: 19929821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic technology: novel approach to ultrasensitive immunoassays.
    Lakowicz JR; Malicka J; Matveeva E; Gryczynski I; Gryczynski Z
    Clin Chem; 2005 Oct; 51(10):1914-22. PubMed ID: 16055432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.
    Son JH; Lee DH; Cho YJ; Lee MH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7235-8. PubMed ID: 24245235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection.
    Huang CT; Jan FJ; Chang CC
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33429970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonically-enhanced competitive assay for ultrasensitive and multiplexed detection of small molecules.
    Wang Z; Zhou Q; Seth A; Kolla S; Luan J; Jiang Q; Rathi P; Gupta P; Morrissey JJ; Naik RR; Singamaneni S
    Biosens Bioelectron; 2022 Mar; 200():113918. PubMed ID: 34990957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.