These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators. Wickramatunge KC; Leephakpreeda T ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151 [TBL] [Abstract][Full Text] [Related]
3. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
4. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. Schmitt S; Haeufle DF; Blickhan R; Günther M Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876 [TBL] [Abstract][Full Text] [Related]
5. Bi-directional series-parallel elastic actuator and overlap of the actuation layers. Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145 [TBL] [Abstract][Full Text] [Related]
6. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Mazzolai B; Margheri L; Cianchetti M; Dario P; Laschi C Bioinspir Biomim; 2012 Jun; 7(2):025005. PubMed ID: 22617166 [TBL] [Abstract][Full Text] [Related]
7. Bioinspired actuation of the eyeballs of an android robotic face: concept and preliminary investigations. Carpi F; De Rossi D Bioinspir Biomim; 2007 Jun; 2(2):S50-63. PubMed ID: 17671329 [TBL] [Abstract][Full Text] [Related]
8. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Carpi F; Kornbluh R; Sommer-Larsen P; Alici G Bioinspir Biomim; 2011 Dec; 6(4):045006. PubMed ID: 22126909 [TBL] [Abstract][Full Text] [Related]
9. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model. Clemente CJ; Richards C Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569 [TBL] [Abstract][Full Text] [Related]
10. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Duffy RM; Feinberg AW Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):178-95. PubMed ID: 24319010 [TBL] [Abstract][Full Text] [Related]
11. Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom. Sinibaldi E; Puleo GL; Mattioli F; Mattoli V; Di Michele F; Beccai L; Tramacere F; Mancuso S; Mazzolai B Bioinspir Biomim; 2013 Jun; 8(2):025002. PubMed ID: 23648821 [TBL] [Abstract][Full Text] [Related]
12. An artificial muscle actuator for biomimetic underwater propulsors. Yim W; Lee J; Kim KJ Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327 [TBL] [Abstract][Full Text] [Related]
16. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming. Richards CT; Clemente CJ Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392 [TBL] [Abstract][Full Text] [Related]
17. Artificial annelid robot driven by soft actuators. Jung K; Koo JC; Nam JD; Lee YK; Choi HR Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328 [TBL] [Abstract][Full Text] [Related]
18. Design of a bio-inspired pneumatic artificial muscle with self-contained sensing. Erin O; Pol N; Valle L; Yong-Lae Park Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2115-2119. PubMed ID: 28268749 [TBL] [Abstract][Full Text] [Related]