BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22961479)

  • 21. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis.
    Lu X; Wang N; Long XB; You XJ; Cui YH; Liu Z
    Respir Res; 2011 Mar; 12(1):28. PubMed ID: 21385388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The characterization of IL-17A expression in patients with chronic rhinosinusitis with nasal polyps.
    Jiang XD; Li GY; Li L; Dong Z; Zhu DD
    Am J Rhinol Allergy; 2011; 25(5):e171-5. PubMed ID: 22186234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of osteopontin in chronic rhinosinusitis with and without nasal polyps.
    Lu X; Zhang XH; Wang H; Long XB; You XJ; Gao QX; Cui YH; Liu Z
    Allergy; 2009 Jan; 64(1):104-11. PubMed ID: 19076536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated microRNA-21 Is a Brake of Inflammation Involved in the Development of Nasal Polyps.
    Liu R; Du J; Zhou J; Zhong B; Ba L; Zhang J; Liu Y; Liu S
    Front Immunol; 2021; 12():530488. PubMed ID: 33936025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis.
    Ishida A; Ohta N; Suzuki Y; Kakehata S; Okubo K; Ikeda H; Shiraishi H; Izuhara K
    Allergol Int; 2012 Dec; 61(4):589-95. PubMed ID: 22918213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic rhinosinusitis with nasal polyps is associated with decreased expression of mucosal interleukin 22 receptor.
    Ramanathan M; Spannhake EW; Lane AP
    Laryngoscope; 2007 Oct; 117(10):1839-43. PubMed ID: 17906500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis.
    Hupin C; Gohy S; Bouzin C; Lecocq M; Polette M; Pilette C
    Allergy; 2014 Nov; 69(11):1540-9. PubMed ID: 25104359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship of TLR2, TLR4 and tissue remodeling in chronic rhinosinusitis.
    Wang X; Zhao C; Ji W; Xu Y; Guo H
    Int J Clin Exp Pathol; 2015; 8(2):1199-212. PubMed ID: 25973005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [γδ T cell expression and significance in chronic rhinosinusitis].
    Li WT; Zhang GH; Li JJ; Chang LH; Wang K; Yang QT
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 Apr; 48(4):311-5. PubMed ID: 23886093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased exhaled nitric oxide and its oxidation metabolism in eosinophilic chronic rhinosinusitis.
    Takeno S; Taruya T; Ueda T; Noda N; Hirakawa K
    Auris Nasus Larynx; 2013 Oct; 40(5):458-64. PubMed ID: 23489830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of interleukin-33 in chronic rhinosinusitis.
    Kim DK; Jin HR; Eun KM; Mo JH; Cho SH; Oh S; Cho D; Kim DW
    Thorax; 2017 Jul; 72(7):635-645. PubMed ID: 27885166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TGF-β1 Induces Epithelial-Mesenchymal Transition of Chronic Sinusitis with Nasal Polyps through MicroRNA-21.
    Li X; Li C; Zhu G; Yuan W; Xiao ZA
    Int Arch Allergy Immunol; 2019; 179(4):304-319. PubMed ID: 30982052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Downregulation of polymeric immunoglobulin receptor and secretory IgA antibodies in eosinophilic upper airway diseases.
    Hupin C; Rombaux P; Bowen H; Gould H; Lecocq M; Pilette C
    Allergy; 2013 Dec; 68(12):1589-97. PubMed ID: 24117840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytokine correlation between sinus tissue and nasal secretions among chronic rhinosinusitis and controls.
    Oyer SL; Mulligan JK; Psaltis AJ; Henriquez OA; Schlosser RJ
    Laryngoscope; 2013 Dec; 123(12):E72-8. PubMed ID: 23852962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of interferon-γ-producing t cells in the pathogenesis of chronic rhinosinusitis with nasal polyps associated with staphylococcal superantigen.
    Cho KS; Kim CS; Lee HS; Seo SK; Park HY; Roh HJ
    J Otolaryngol Head Neck Surg; 2010 Oct; 39(5):600-5. PubMed ID: 20828526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Up-regulation of the mucosal epidermal growth factor receptor gene in chronic rhinosinusitis and nasal polyposis.
    Ding GQ; Zheng CQ; Bagga SS
    Arch Otolaryngol Head Neck Surg; 2007 Nov; 133(11):1097-103. PubMed ID: 18025312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of superantigens in chronic rhinosinusitis with nasal polyps.
    Wang M; Shi P; Chen B; Zhang H; Jian J; Chen X; Wang Z; Zhang D
    ORL J Otorhinolaryngol Relat Spec; 2008; 70(2):97-103. PubMed ID: 18408407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps.
    Jiao J; Duan S; Meng N; Li Y; Fan E; Zhang L
    Clin Exp Allergy; 2016 Mar; 46(3):449-60. PubMed ID: 26399381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation and expression of IL-32 in chronic rhinosinusitis.
    Soyka MB; Treis A; Eiwegger T; Menz G; Zhang S; Holzmann D; Akdis CA; Meyer N
    Allergy; 2012 Jun; 67(6):790-8. PubMed ID: 22486709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of IL-33 and its receptor ST2 in chronic rhinosinusitis with nasal polyps.
    Baba S; Kondo K; Kanaya K; Suzukawa K; Ushio M; Urata S; Asakage T; Kakigi A; Suzukawa M; Ohta K; Yamasoba T
    Laryngoscope; 2014 Apr; 124(4):E115-22. PubMed ID: 24122812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.