These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22961617)
1. Epilithic community metabolism as an indicator of impact and recovery in streams affected by acid mine drainage. DeNicola DM; Layton L; Czapski TR Environ Manage; 2012 Dec; 50(6):1035-46. PubMed ID: 22961617 [TBL] [Abstract][Full Text] [Related]
2. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Bott TL; Jackson JK; McTammany ME; Newbold JD; Rier ST; Sweeney BW; Battle JM Ecol Appl; 2012 Dec; 22(8):2144-63. PubMed ID: 23387116 [TBL] [Abstract][Full Text] [Related]
3. Biomonitoring acidic drainage impact in a complex setting using periphyton. de la Peña S; Barreiro R Environ Monit Assess; 2009 Mar; 150(1-4):351-63. PubMed ID: 18386149 [TBL] [Abstract][Full Text] [Related]
4. An ecotoxicological screening tool to prioritise acid mine drainage impacted streams for future restoration. Oberholster PJ; Genthe B; Hobbs P; Cheng PH; de Klerk AR; Botha AM Environ Pollut; 2013 May; 176():244-53. PubMed ID: 23434775 [TBL] [Abstract][Full Text] [Related]
5. The ecotoxicological recovery of Ely Creek and tributaries (Lee County, VA) after remediation of acid mine drainage. Simon ML; Cherry DS; Currie RJ; Zipper CE Environ Monit Assess; 2006 Dec; 123(1-3):109-24. PubMed ID: 16770499 [TBL] [Abstract][Full Text] [Related]
6. Seasonality of total fatty acid profiles in acid mine drainage impaired streams. Drerup SA; Vis ML Environ Monit Assess; 2018 Jul; 190(8):467. PubMed ID: 30008139 [TBL] [Abstract][Full Text] [Related]
7. Evaluating expected outcomes of acid remediation in an intensively mined Appalachian watershed. Watson AS; Merovich GT; Petty JT; Gutta JB Environ Monit Assess; 2017 Jul; 189(7):339. PubMed ID: 28620711 [TBL] [Abstract][Full Text] [Related]
8. Long-term effects and recovery of streams from acid mine drainage and evaluation of toxic metal threshold ranges for macroinvertebrate community reassembly. Herbst DB; Medhurst RB; Black NJP Environ Toxicol Chem; 2018 Oct; 37(10):2575-2592. PubMed ID: 29939422 [TBL] [Abstract][Full Text] [Related]
9. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities. Clapcott JE; Goodwin EO; Harding JS Environ Manage; 2016 Mar; 57(3):711-21. PubMed ID: 26467674 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic pigments in acid mine drainage: Seasonal patterns and associations with stressful abiotic characteristics. Gomes P; Valente T; Geraldo D; Ribeiro C Chemosphere; 2020 Jan; 239():124774. PubMed ID: 31521937 [TBL] [Abstract][Full Text] [Related]
11. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. DeNicol DM; Stapleton MG Environ Pollut; 2002; 119(3):303-15. PubMed ID: 12166664 [TBL] [Abstract][Full Text] [Related]
12. Before-After Control-Impact field surveys and novel experimental approaches provide valuable insights for characterizing stream recovery from acid mine drainage. Kotalik CJ; Cadmus P; Clements WH Sci Total Environ; 2021 Jun; 771():145419. PubMed ID: 33736129 [TBL] [Abstract][Full Text] [Related]
13. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient. DeNicola DM; Lellock AJ J Phycol; 2015 Aug; 51(4):739-49. PubMed ID: 26986794 [TBL] [Abstract][Full Text] [Related]
14. Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China. Ge J; Wu S; Touré D; Cheng L; Miao W; Cao H; Pan X; Li J; Yao M; Feng L Environ Sci Pollut Res Int; 2017 Dec; 24(35):26881-26892. PubMed ID: 25631737 [TBL] [Abstract][Full Text] [Related]
15. Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining. Simonin M; Rocca JD; Gerson JR; Moore E; Brooks AC; Czaplicki L; Ross MRV; Fierer N; Craine JM; Bernhardt ES Ecol Appl; 2021 Sep; 31(6):e02389. PubMed ID: 34142402 [TBL] [Abstract][Full Text] [Related]
16. Impacts of point-source Net Alkaline Mine Drainage (NAMD) on stream macroinvertebrate communities. Kimmel WG; Argent DG J Environ Manage; 2019 Nov; 250():109484. PubMed ID: 31487601 [TBL] [Abstract][Full Text] [Related]
17. Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. Steyn M; Oberholster PJ; Botha AM; Genthe B; van den Heever-Kriek PE; Weyers C J Environ Manage; 2019 Apr; 235():377-388. PubMed ID: 30708275 [TBL] [Abstract][Full Text] [Related]
18. Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage. Ross RM; Long ES; Dropkin DS Environ Monit Assess; 2008 Oct; 145(1-3):323-38. PubMed ID: 18236166 [TBL] [Abstract][Full Text] [Related]
19. Comparison of benthic macroinvertebrate indices for the assessment of the impact of acid mine drainage on an Irish river below an abandoned Cu-S mine. Gray NF; Delaney E Environ Pollut; 2008 Sep; 155(1):31-40. PubMed ID: 18093710 [TBL] [Abstract][Full Text] [Related]
20. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania. Maccausland A; McTammany ME Environ Pollut; 2007 Sep; 149(2):216-26. PubMed ID: 17395348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]